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PREFACE

Today’s engineering and science students routinely confront problems involving numerical
solution techmiques. Sometimes these solutions are “awtomatically”™ generated by a soft-
ware package. In other cases, students must use programming skills to devise their own
solutions. In either case, knowledge of numerical methods is absolutely necessary for de-
veloping and interpreting such solutions with wisdom and insight.

This book 15 writlen (o support a one-semester course in numerical methods, The
book’s primary audience are stodents who want to learn numerical methods o solve prob-
lems in engineering and science. As such, the methods are motivated by problems rather
than by mathematics. That sad, sufficient theory is provided so that students come away
with insight into the techniques and their shortcomings.

MATLAB® provides a great environment for such a course. Although other environ-
ments {¢.g., Excel/VBA, Mathead) or languages (e.g.. Fortran 90, C++) could have been
chosen, MATLAB presently offers a nice combination of handy programming features
with powerful built-in numerical capabilities, On the one hand, its M-file programming en-
vironment allows students to implement moderately complicated algorithms in a structured
and coherent fashion, On the other hand, its built-in numerical capabilities empower stu-
dents to solve more difficult problems without trving to “reinvent the wheel.”

The first chapters provide introductory material including background on mathemati-
cal modeling, MATLAB fundamentals, and error analysis, This is followed by chapters
dealing with several major areas of numerical methods: root location, linear algebraic
equations, least-squares regression, interpolation, integration, ordinary differential equa-
tions, and eigenvalues,

I have made a concerted effort to make this book as student-Triendly as possible. Thus,
I've tried w keep my explanations straightforward and oriented practically. Although my
primary intent is to empower students by providing them with a sound introduction to nu-
merical problem solving, | have the ancillary objective of making this introduction excit-
ing and pleasurable. | believe that motivated students who enjoy engineering and science,
problem solving, and-—yes—programming, will ultimately make better professionals, IF
my book fosters enthusiasm and appreciation for this subject, I will consider the effort a
SUCCESS,
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Chapter Objectives  Chapter Objectives begin each chapter. The objectives provide stu-
dents with the function of each chapter as well as the specific topics covered in each chap-
ter. The objectives enable studenis to set tangible goals before they begin each chapter.

You've Got a Problem A section entitled You've Gor

_ Proflem can be found on the first page of most chapters,
Here Chapra poses a real-life problem that requires the type

Curve Fitting: of numerical solution technique that 15 the subject of the
Fitling a Straight Line chapter. The intent is to introduce the student to the topic via

a tangible example rather than through abstract mathematics,

After an exposition of the numerical methods, the problem is

e o then revisited in order to demonstrate how the learned mate-
o rial provides the means to solve the problem.
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Theory Presented as it Informs Key Concepts
The text i1s intended for Numerical Methods
users, not developers. Therefore, theory is not
included for “theory’s sake.” for example no
proofs. Theory is included as it informs key B
concepts such as the Taylor Series, conver- T R I T
cence, condition, etc. Hence, the student is - e o o et ks
shown how the theory connects with practical

issues in problem solving,.
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Introductory  MATLAB  Material The text in-
cludes two introductory chapters on how o use
MATLAB. Chapter 2 shows students how o per-
form computations and create graphs in MATLAB's
standard command mode. Chapter 3 provides a
primer on developing numerical programs via
MATLAB M-file functions. Thus, the text provides
students with the means to develop their own nu-
merical algorithms as well as w tap into MATLAR s
powerful built-in routines.
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Algorithms Presented Using
MATLAB Mfiles Instead of
using pseudocode, this book
presents algorithms as well-
structured MATLAB M-files.
Aside from being uselul com-
puter programs, these provide
students with models for their
own M-files that they wall de-
velop as homework exercises.
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Worked Examples  FEach example begins with a
prablem statement and ends with a solution. The so-
lution is laid out in detail so that students can clearly
follow the steps in the numerical computation.
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Problem Sels The text includes a wide-variety of
12 HORS OF Ty PR MENIKE problems. Many are drawn from engineering and sci-
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Useful Indexes Appendix A
contains MATLAB commands
and Appendix B contains M-file
functions.

entific disciplines. Others are used to ilfustrate numer-
ical techniques and theoretical concepts. Problems
include those that can be solved with a pocket calcula-
tor as well as others that require computer solution
with MATLAB.

APPENDIX A
MATLAB BUILT-IN FUNCTIONS

Supplements A text Web site is available at
hirp:/f'www.mhhe.com/chapra.  Resowrces  include
PowerPoint slides of texi figures and chapter objectives,
M-files and additional MATLAB resources, Available
to instructors only, the detailed solutions for all text
problems will be delivered via CD-Rom, in our new,
electronic, Complete Online Solution Manual Organi-
zation System, COSMOS is a daiabase management
tool geared toward assembling homework assignments,
tests and quizzes.
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Mathematical Modeling,
Numerical Methods,
and Problem Solving

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to provide vou with a concrete idea of what
numerical methods are and how they relate to engineering and scientific problem
solving. Specific objectives and topics covered are

*  Learning how mathematical models can be formulated on the basis of scientific
principles to simulate the behavior of a simple physical system.

*  Understanding how numerical methods afford a means to generate solutions in
a manner that can be implemented on a digital computer.

®*  Understanding the different types of conservation laws that lie beneath the
models used in the various engineering disciplines and appreciating the
difference between steady-state and dynamic solutions of these models.

®*  Learning about the different types of numerical methods we will be covering in
this hook.

YOU'VE GOT A PROBLEM

uppose that a bungee-jumping company hires vou, You're given the task of predicting
S the velocity of a jumper (Fig. 1.1} as a function of time during the free-fall part of the
jump. This information will be used as part of a larger analysis to determine the length

and required strength of the bungee cord for jumpers of different mass,
You know from your studies of physics that the acceleration should be equal to the ratio
of the force to the mass (Newton's second law). Based on this insight and vour knowledge
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MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

Upward force
due to air
resistance

Downward
force due
to gravity

FIGURE 1.1
Forces acling on o
freedalling bunges
UImpet.

1.1

of fluid mechanics, you develop the following mathematical model for the rate of change
of velocity with respect 1o time,

dv o]

2
dt £ i

1

where v vertical velocity (mfs), ¢ time (s), g - the acceleration due 1o gravity
¢ 981 mis’y ey asccond-order drag coefficient (kg/m), andm - the jumper’s mass (kg).

Because this is a differential equation, you know that ealculus might be used to obtain
an analytical or exact solution for v as a function of 1. However, in the following pages, we
will illustrate an aliernative solution approach. This will involve developing a compuier-
oriented numerical or approximate solution,

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
{) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientisis use
numerieal methods in their work,

A SIMPLE MATHEMATICAL MODEL

A mathematicad mode! can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. Ina very gen-
eral sense, it can be represented as a functional relationship of the form

forcing )

. parameters, .
pd functions

Dependent - independent
pe .f( pe (LD

variable variables

where the dependent variable is a characteristic that usually reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined: the paramerers are reflective of the
system’s properties or composition: and the forcing functions are external influences acting
upon it.

The acteal mathematical expression of Eq. (1.1} can range from a simple algebraic
relationship (o large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal 1o the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

Fooma (1.2

where F is the net force acting on the body (N, or kg m/s?), m is the mass of the object (kg),
and ¢ is its acceleration (m/s”),



| Chapra: Applied Numerical | 1. Mathematical Modeling, | Text 5 Tha MR-l

Mathads with MATLAB for
Engineers and Scientists

Numerical Methods, and Campisnas, 2004
Prablem Solving

1.1 A SIMPLE MATHEMATICAL MODEL 3

The second law can be recast in the format of Eq. (1.1) by merely dividing both sides
by m o give
F
a- — (1.3)
mn
where ¢ is the dependent variable reflecting the system’s behavior, £ is the forcing func-
tion, and m is a parameter, Note that for this simple case there is no independent variable
because we are not vet predicting how acceleration varies in time or space.
Equation {1.3) has a number of characteristics that are typical of mathematical models
of the physical world.

s It describes a natural process or system in mathematical terms.

s [irepresents an ideakization and simplification of reality, That is, the model ignores neg-
ligible details of the natural process and focuses on its essential manifestations, Thus,
the second law does not include the effects of relativity that are of minimal importance
when applied to objects and forces that interact on or about the carth’s surface at veloc-
ities and on scales visible 1o humans,

s Finally, it vields reproducible results and. consequently, can be used for predictive pur-
poses, For example, if the force on an object and its mass are known, Eq. (1.3) can be
used to compute acceleration,

Because of its simple algebraic form. the solution of Eq. (1.2) was obtained easily.
However, other mathematical models of physical phenomena may be much more complex,
and either cannot be solved exactly or require more sophisticated mathematical techniques
than simple algebra for their solution. To illustrate a more complex model of this kind,
Newton's second law can be used to determine the terminal velocity of a free-falling body
near the earth’s surface. Our falling body will be a bungee jumper (Fig. 1.1). For this case,
a model can be derived by expressing the acceleration as the time rate of change of the
velocity {duv/dt) and substituting it into Eq. (1.3) to yield

dv  F 4

7 m (1.4)
where v is velocity (in meters per second). Thus, the rate of change of the velocity is equal
to the net force acting on the body normalized to its mass. If the net force is positive, the
object will accelerate. If it is negative, the object will decelerate. If the net force is zero. the
object’s velocity will remain at a constant level.

Next. we will express the net force in terms of measurable variables and parameters.
For a body falling within the vicinity of the earth, the net force is composed of two oppos-
ing forces: the downward pull of gravity Fp and the upward force of air resistance Fyr
(Fig. 1.1k

F. Fp Fy (1.5)

If force in the downward direction 18 assigned a positive sign, the sccond law can be
used to formulate the force due 1o gravity as

Fr- mg (1.6}

where g is the acceleration due to gravity (9.81 m/s?).
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EXAMPLE 1.1

Adr resistance can be formulated in a variety of ways, Knowledge from the science of
fluid mechanics suggests that a good first approximation would be o assume that it is pro-
portional to the square of the velocity,

Fip- - cgv® (.7

where oy is a proportionality constant called the drag coefficient {kg/m). Thus, the greater
the fall velocity, the greater the upward force due w air resistance, The parameter ¢y ac-
counts for properties of the falling object, such as shape or surface roughness, that afTect air
resistance, For the present case, ¢ might be a function of the type of clothing or the orien-
tation used by the jumper during free fall,

The net force is the difference between the downward and upward force, Therefore,
Eqs. (1.4) through (1.7) can be combined o yield

dv Cd 2

7 2 p v {1.8)

Equation (1.8) 15 a model that relates the acceleration of a falling object 1o the forces
acting on it 11 1s a differentiol equation because it is written in terms of the differential rate
of change (v /dt) of the variable that we are interested in predicting, However, in contrast
10 the solution of Newton's second law in Eq. (1.3), the exact solution of Eq. (1.8) for the
velocity of the jumper cannot be obtained using simple algebraic manipulation. Rather,
more advanced techmigues such as those of calculus must be applied to obtain an exact or
analytical solution. For example, if the jumper is inigally at rese (v - Qate - 03, calculus
can be used o solve Eq. (1.8) for

o
o [ (52 (19

Y oy

where tanh is the hyperbolic tangent that can be either computed directly’ or via the more
elementary exponential function as in

XX

& &
tanh x - pr— {110

Note that Eq. (1.9} is cast in the general form of Eq. (1.1) where v(r) is the dependent
variable, ris the independent variable, oy and m are parameters, and g is the foreing function.

Analytical Selution to the Bungee Jumper Problem

Problem Statement. A bungee jumper with a mass of 68.1 kg leaps from a stationary hot
air balloon. Use Eq. (1.9} to compute velocity for the first 12 s of free fall. Also determine
the terminal velocity that will be attained for an infinitely long cord (or alternatively, the
Jumpmaster is having a particularly bad day!). Use a drag cocfficient of 0,25 kg/m.

"MATTAR® allows divect calculation of the hyperbolic tangent via the buili-in function tanh (=),
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Solution.  Inserting the parameters into Eq. (1.9} yields

[9.81(68.1 [9.81(0.25
W) - #t&ﬂh(ﬁ JI) - 516938 tanh(0. 18977r)

Vo025 681

which can be used to compute

s -y mfs
o a
2 18,7292
4 337118
& 420762
B 455575
o 49.4214
12 504175
: 516938

According to the model, the jumper accelerates rapidly (Fig. 1.2). A velocity of
494214 m/s (about 110 mi/h) is artained after 10 5. Note also that after a sufficiently long

FIGURE 1.2
the analytical solution for the bungee jumper problem as computed in Example 1.1, Velocity
increases with time and asymplatically approaches o teminal velocity,

5‘{; R
Terminal velocity
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MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

time, a constant velocity, called the ferminal velocing, of 51.6983 m/s (115.6 mi/h) is
reached. This velocity is constant because, eventually, the force of gravity will be in bal-
ance with the air resistance. Thus, the net force is zero and acceleration has ceased.

Equation (1.9} is called an analvtical or closed-form solution because it exactly satis-
fies the original differential equation. Unfortunately, there are many mathematical models
that cannot be solved exactly. In many of these cases, the only alternative is to develop a
numerical solution that approximates the exact solution,

Numerical methods are those in which the mathematical problem is reformulated so it
can be solved by arithmetic operations, This can be illustrated for Eq. (1.8) by realizing that
the time rate of change of velocity can be approximated by (Fig. 1.3):

du: Av el v

—_— — 1.11
ot At [P T ¢ )

where Av and At are differences in velocity and time computed over finite intervals, v(f)
is velocity at an initial time f;, and ©(t; ) is velocity at some later time ;. ;. Note that
dufde © Av/Ar is approximate becanse Af is finite. Remember from calculus that

dv . A
di ar 0 Ar

Equation {1.11) represents the reverse process.

FIGURE 1.3 _
The use of a finite difference o oppraximate the first derivative of v with respect o ¢,
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EXAMPLE 1.2

Equation (1.11) is called a finire divided difference approximation of the derivative at
time ;. It can be substituted into Eq. (1.8} to give

AU AU D
.1 & m
This equation can then be rearranged to vield

el ) vl - [H ;—TL‘(I.;}J]“.;. 1 0y (112

Notice that the term in brackets is the right-hand side of the differential equation itself
[Eqg. (1.8)]. That is, it provides a means to compute the rate of change or slope of v. Thus,
the equation can be rewritten as

duy

— 113
a1 (1.13)

Vo -
where the nomenclature v; designates velocity at time + and A - & ¢ - 4.

Thus, we can see that the differential equation has been transformed into an equation that
can be vsed to determine the velocity algebraically at +;. | using the slope and previous val-
ues of vand ¢, If vou are given an initial value for veloeity at some time £, you can easily com-

pute velocity at a later time & 1. This new value of velocity atf; | can in turn be employed to
extend the computation to velocity at ;. > and so on. Thus at any time along the way,

New value - old value - slope - step size

This approach is formally called Enler’s method, We'll discuss it in more detail when we
turn to differential equations later in this book.

Numerical Solution to the Bungee Jumper Problem

Problem Statement.  Perform the same computation as in Example 1.1 but use Eq. (1.13)
to compute velocity with Fuler’s method. Employ a step size of 2 s for the calculation,

Solution. At the start of the computation (; - (). the velocity of the jumper is zero.
Using this information and the parameter values from Example 1.1, Eq. (1.13) can be used
o compute velocity at 5. 1+ 28

025 :
r- 0 |98 ——(hF - 2- 19.62mfs
v [ 68.]{ | } 5

For the next interval (from ¢ - 2 1o 4 5), the computation is repeated. with the result

v 1962 - [9.31- %u%mz]- 2. 364137 mis
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BU  Foh
Terminal valocity
Approximate,
40— numerical solution
ol
E -
3 Exact, analytical
salution
20
| 1 |
]
iS5
FIGURE 1.4

Comparison of the numerical and anclytical soluiicons for the bungee jumper problem.

The calculation 1s continued in a similar fashion to obtain additional values:

48 S, mfs

0 0
2 1G.&200
4 JhA13S
& Ab OB
g 501802
o 513123
12 516008
S48

The results are plotied in Fig, 1.4 along with the exact solution. We can see that the nu-
merical method captures the essential features of the exact solution, However, because we
have emploved straight-line scgments o approximate a continuously curving function,
there is some discrepancy between the two results, One way 1o minimize such discrepan-
cies is (o use a smaller step size. For example, applying Eq. (1.13) at 1-s intervals resulis in
a smaller error, as the straighi-line segments track closer to the true solution, Using hand
calculations, the effort associated with using smaller and smaller step sizes would make
such numerical solutions impractical. However, with the aid of the computer, large num-
bers of calculations can be performed easily, Thus, you can accurately model the velocity
of the jumper without having o solve the differential equation exactly.
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Asin Example 1.2, a computational price must be paid for a more accurate numerical
result. Each halving of the step size o attain more accuracy leads 1o a doubling of the num-
ber of computations, Thus, we see that there is a trade-off between accuracy and computa-
tional effort. Such trade-offs figure prominently in numerical methods and constituie an
important theme of this book.

CONSERVATION LAWS IN ENGINEERING AND SCIENCE

Aside from Newton's second law, there are other major organizing principles in science
and engineering. Among the most important of these are the conservation faws, Although
they form the basis for a variety of complicated and powerful mathematical models. the
great conservation laws of science and engineering are conceptually easy to understand.
They all boil down to

Change - increases - decreases (1.143

This is precisely the format that we employed when using Newton’s law to develop a Torce
balance for the bungee jumper [Eq. (1.8}].

Although simple, Eq. (1.14) embodies one of the most fundamental ways in which
conservation laws are vsed in engineering and science—that is, to predict changes
with respect 1o time. We will give it a special name—the time-variable (or transient)
computation.

Aside from predicting changes, another way in which conservation laws are applied is
for cases where change is nonexistent. If change is zevo, Eq. (1.14) becomes

Change - - increases - decreases
or

Increases - decreases (1.15)

Thus, if no change oceurs, the increases and decreases must be in balance. This case, which
is also given a special name—the sfeadv-state calculation—has many applications in engi-
neering and science. For example, for steady-state incompressible Nuid flow in pipes. the
flow into a junction must be balanced by Tlow going out, as in

Flow in - flow out

For the junction in Fig. 1.5, the balance can be used to compute that the flow out of the
fourth pipe must be 60,

For the bungee jumper, the steady-state condition would correspond to the case where
the net force was zero or [Eq. (1.8) with dv/de - 0]

me - cduz (1.16}

Thus, at steady state, the downward and upward forces are in balance and Eq. (1.16) can be
solved for the terminal velocity
o
- —

]
Adthough Egs. (1.14) and (1.15) might appear trivially simple, they embody the two fun-
damental ways that conservation laws are employed in engineering and science, As such,
they will form an important part of our efforts in subsequent chapters 1o illustrate the con-
nection between numerical methods and engineering and science,



| Chapra: Applied Numerical | 1. Mathematical Modeling, | Text 5 Tha MR-l
Mathods with MATLAB for  Numerical Methods, and Campisnas, 2004
Engineers and Scientists Prablem Solving

10

MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

1.3

Pipe 2
Flow in = 80
Fipe 1 Pipe 4
Flow in = 100 Flow out = 7
Pipa 3

Flow out = 120

FIGURE 1.5 ) )
A flow balonce for steady incompressible Auid flow at the junclion of pipes.,

Table 1.1 summarizes some models and associated conservation laws that figure promi-
nently in engineering. Many chemical engineering problems involve mass balances for
reactors. The mass balance is derived from the conservation of mass. It specifies that the
change of mass of a chemical in the reactor depends on the amount of mass flowing in
minus the mass flowing out.

Civil and mechanical engineers often focus on models developed from the conserva-
tion of momentum. For civil engineering, force balances are utilized to analyze structures
such as the simple truss in Table 1. |, The same principles are emploved for the mechanical
engineering case studies to analyze the transient up-and-down motion or vibrations of an
automobile.

Finally, electrical engineering studies employ both current and energy balances to model
electric circuits. The current balance, which results from the conservation of charge, is simi-
lar in spirii to the flow balance depicted in Fig. 1.5, Just as flow must balance at the junction
of pipes, electric current must balance at the junction of electric wires. The energy balance
specifies that the changes of voltage around any loop of the circuit must add up to zero.

We should note that there are many other branches of engineering beyvond chemical. civil,
electrical, and mechanical. Many of these are related to the Big Four, For example, chemical
engineering skills are used extensively in areas such as environmental, petroleum. and bio-
medical engineering. Similarly, aerospace engineering has much in common with mechani-
cal engineering, We will endeavor to include examples from these areas in the coming pages.

NUMERICAL METHODS COVERED IN THIS BOOK

We chose Euler’s method for this introductory chapter because it is typical of many other
classes of numerical methods. In essence, most consist of recasting mathematical opera-
tions into the simple kind of algebraic and logical operations compatible with digital com-
puters. Figure 1.6 summarizes the major areas covered in this text.
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TABLE 1.1 Devices and types of balances that are commanly used in the four major areas of engineering. For

each case, the conservation law on which the balance is based is specified.
Field Device Organizing Principle Mathematical Expression
Chemical Conservation Mass balance:
engineering of mass Input Output
Over a unit of time period
Amass = inputs — outputs

Ciwil Conservation Force balance: +Fy

engineering

Structure

Mechanical
engineering

Machine

Electrical
engineering

Circuit

of momentum

Conservation
of momentum

Conservation
of charge

Conservation
of energy

t

~Fy -— ) —

!

.

At each node
X horizgontal forces (Fyb = 0
% vertical forces (Fy) = 0

Force balance: Upward force
=10
Downward force

o

wﬁ = downward force — upward force

Current balance: +1, iy

For each node

¥ current (i) = 0 i
iRy
Voltage balance:
<. 3
iRy 2 13
i1y

Argund each loop
* emf's — X woltage drops for resistors
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la} Part 2: Roots fx)d

Solve flx) = 0 for x
Rools

F\f
bl Part 3: Linear algebraic equations e d
Given the a's and the i's, solve forthe xs L _____ Safeis
dyky +oapt = My |
Xy F dpda = B i
; -
() Part 4: Curve fitting
Flx) Flx)d Interpolation
[ ]
®
Regressian
i %
(d} Part 5: Integration
[ESE
1= _{h_,"t.h}fl".'l
Find the area under the curve. f
o I X
el Part 6: Differential equations ¥
Given Slope = fir, v

v Av

da T A it )
sobve for v as a function of ¢
¥iep = % M valL

! Ay

FIGURE 1.6

Semmary of the numerical methods covered in this book.
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PROBLEMS

1.1 Use caleulus to verify that Eg, (1.9) is a solution of
Eqg. (1.8).
1.2 The following information is available for a bank
account:

Date Deposits Withdrawals Balance
571 151233
22013 327.28
/1
214 80 378 61
7/1
450.25 106,80
HY
12731 350.61
91

Use the conservation of cash to compute the balance on 6/1.
741, 8/, and 9/1. Show each step in the computation. Is this
a steady-state or a transient computation?

1.3 Repeat Example 1.2, Compute the velocity tor - 12 5,
with a step size of (a) | and (b) 0.5 5. Can you make any
statement regarding the errors of the calculation based on the
restlts?

1.4 Rather than the nonlinear relationship of Eq. {1.7), vou
might choose to maodel the upward force on the hungee
jumper as a linear relationship:

Frp- - cu

where ¢ - a first-order drag coefficient (kg/s).

{a) Using calculus, obtain the closed-form solution for the
case where the jumper is initially at rest (v- 0 at
re O

(b} Repeat the numerical calculation in Example 1.2 with
the same initial condition and parameter values, Use a
value of 12.5 kgts for e,

1.5 The amount of a uniformly distributed radicactive conta-

minant contained in a closed reactor is measured by its con-

centration ¢ {becquerel/liter or Bg/L), The contaminant de-

creases at a decay rate proportional to its concentration: that is,

Decay rate - - ke

where & is a constant with units of day '. Therefore, ac-
cording 1o Eq. {1.14), a mass balance for the reactor can be

written as

e
dr
( change decrease
in mass) ' (b}' d&(.‘ﬂ}')

{a) Use Euler’s method 1o solve this equation fromr - (o
Pdwithd - 0.2d ' Employ a siep size of Ar - 0.1 4.
The concentration at ¢ - (is 10 Bg/L.,

{b} Plot the solution on a semilog graph (Le., In ¢ versus r)
and determine the slope. Interpret your results.

1.6 A storage tank contains a liquid at depth v where y =0

when the tank is half full. Liguid is withdrawn at a constant

flow rate {J 1o meet demands. The contents are resupplied at

a sinusoidal rate 302 sin’(7). Equation (1,14} can be written
for this system as

. Rf.'

di"") 30sin’) - Q
(change m)_ (inflow) - (outflow)
volume

or, since the surface area A is constant

d}' Q LA Q

. 3Edntin. =

e SN0 n
FIGURE P1.6
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Skin
Uring * T 1 Feces
Food —- e Air
BODY
Dirink —~ —= Sweat
Usoue = 3 MYS
Ay =7 U
FIGURE P1.8 mnt
FIGURE P1.9

Use Euler’s method ro solve for the height v from r - 0 to
5 d with a step size of 0.5 d. The parameter values are
A 1200m* and € - 400 mifd.

1.7 For the free-falling bungee jumper with linear drag
(Prob. 1.4} assume a first jumper is 68.1 kg and has a drag
coefficient of 12,5 kg/fs. Il a second jumper has a drag coel-
ficient of 14 kgfs and 3 mass of 75 kz. how long will it take
her to reach the same velocity jumper 1 reached in 10 57

1.8 The volume flow rate through a pipe is given by
¢ - vA, where v is the average velocity and A is the cross-
sectional area. Use volume-continuity o solve for the
required area in pipe 3 of Fig. P18,

1.9 The following is a steady-state H,( mass balance for an
average man in one day (g, P1.9} One thousand grams are
ingested as food, 1200 g are ingested as liquid, and the body
will produce metabolically some additional water. In breath-
ing air, the exchange is 50 g while inhaling, and 400 g while
exhaling over a one-day period. The body will also lose H,O
through sweat, urine, feces, and in the skin in measurements

of 200 g, 1400 2. 200 g, and 350 g, respectively. To maintain
steady state, where

E mass in - Z mass out - 0

what amount of H,0 must be metabolically produced?

1.10 Water accounts for roughly 60% of total body weight.
Assumning it can be categorized into six regions, the percent-
ages go as follows, Plasma claims 4.3% of the body weight
and is 7.5% of the total body water. Dense connective tissue
and cartilage occupies 4.5% of the total body weight and
T.5% of the total body water, Interstitial lymph is 12% of the
body weight, which is 20% of the total body water. Inacces-
sible bone water is also roughly 7.5% of the total body water
and 4.5% total body weight. If transcellular water is 1.5% of
the total body weight and total intracellular warer is 35%
of the total body water, what percent of total body weight
must the intracellular water be, and what percent of total
body water must the transcellular water be?
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to provide an introduction and overview of
how MATLAB's command mode is used to implement interactive computations.
Specific objectives and topics covered are

Learning how real and complex numbers are assigned to variables
Leaming how vectors and matrices are assigned values using simple
assignment, the colon operator, and the linspace and logspace functions.
Understanding the priority rules for constructing mathematical expressions.
Gaining a general understanding of built-in functions and how you can learn
more about them with MATLAB’s Help facilities.

®*  Learning how to use vectors to create a simple line plot based on an equation.

ATLAB is a computer program that provides the user with a convenient environ-
ment for performing many tvpes of calculations. In particular, it provides a very
nice tool to implement numerical methods.

The most common way to operate MATLAB is by entering commands one at a time in
the command window. In this chapter, we use this interactive mode to introduce you to
common operations such as performing calculations and creating plots. In Chap. 3, we
show how such commands can be used to create MATLAB programs.

Omne further note. This chapter has been written as a hands-on exercise, That is, you
should read it while sitting in front of your computer. The most efficient way to hecome
proficient is to actually implement the commands on MATLAB as you proceed through the
following material.

15



| Chapra: Appliad Numerical | 2 MATLAB Fundamentals Taxt 5 Tha MR-l
Methods with MATLAB for Campisnas, 2004
Engineers and Scientists

16

MATLAB FUNDAMEMNTALS

2.1

2.2

THE MATLAB ENVIRONMENT

MATLAB uses three primary windows:

» Command window. Used to enter commands and data.
» Graphics window. Used o display plots and graphs.
Edit window. Used to create and edit M-files,

In this chapter, we will make use of the command and graphics windows, In Chap. 3 we
will use the edit window 1o create M-files,

After starting MATLAB, the command window will open with the command prompt
being displayed

I

The command mode of MATLAB operates in a sequential fashion as you type in com-
mands line by line. For each command. vou get a result. Thus, you can think of it as oper-
ating like a very fancy calculator. For example. if vou type in

== 25 - 16
MATLAB will display the result’
ans =
3%
Notice that MATLAB has automatically assigned the answer to a variable, ans. Thus, yoo
could now use ans in a subsequent calculation:
=x ans + 11
with the result

ans
0

ol

MATLAB assigns the result to ans whenever you do not explicitly assign the calculation
to a variable of your own choosing.

ASSIGNMENT

Assignment refers to assigning values to variable names. This resulis in the storage of the
values in the memory location corresponding to the variable name.

2.2.1 Scalars
The assignment of values to scalar variables is similar to other computer languages.
Try typing

=»oa = 4

"Note that MATEAB skips a line bebween the label (ans =) and the number (3 %), Here, we omit such blank
lines for conciseness.



| Chapra: Appliad Numerical | 2 MATLAB Fundamentals Taxt 5 Tha MR-l

Mathads with MATLAB for
Engineers and Scientists

Campaenas, 2004

2.2 ASSIGNMENT 17

Note how the assignment echo prints 1o confirm what vou have done;

a

4

Echo printing is a characteristic of MATLAB. It can be suppressed by terminating the
command line with the semicolon (; ) character. Try typing

You can type several commands on the same line by separating them with commas or
semicolons. If vou separate them with commas. they will be displayed. and if yvou use the
semicolon, they will not. For example,

22 a = 4,4 = Ayx = 1;

a =

4

MATLAB treats names in a case-sensitive manner—ihat 1s, the name = 15 not the same
as the mame 2. To illustrate this, enter

=& d
and then enter
e B

See how their values are distinct. They are distinct names.

We can assign complex values to variables, sjni MATLAB handles complex arith-
metic automatically. The unit imaginary number - | is preassigned to the variable 1.
Consequently, a complex value can be assigned simply as in

mm N o= 241i*d

e —
2.0000 - 4.00004

It should be noted that MATLAB allows the symbol 5 to be used to represent the unit imag-
inary number for input. However. it always uses an i for display. For example,

=2 X o= 2+3*4

e —
Z.0000 « 4.00004

There are several predefined variables, for example. 1.
== Pl

ailg

had

L1416

Notice how MATLAB displays four decimal places. If vou desire additional precision,
enter the following:

== Format long



| Chapra: Appliad Numerical | 2 MATLAB Fundamentals Taxt 5 Tha MR-l
Methods with MATLAB for Campisnas, 2004
Engineers and Scientists

18 MATLAB FUNDAMEMNTALS

Now when pi is entered the result is displayed to 15 significant figures:
== pi

ang =
3.14159265358879

To return 1o the four decimal version, type

=» format short

2.2.2 Arrays, Vectors and Matrices

An array is a collection of values that are represented by a single variable name. One-
dimensional arrays are called veciory and two-dimensional arrays are called matrices. The
scalars used in Section 2.2.1 are actally a matrix with one row and one column,

Brackets are used to enter arrays in the command mode. For example, a row vector can
be assigned as follows:

]

== a = [ 1 2 3 4

[= -

2 3 4 ]

Note that this assignment overrides the previous assignment of 2 = 4.

In practice, row vectors are rarely used to solve mathematical problems. When we
speak of vectors, we usually refer to column vectors, which are more commonly used. A
column vector can be entered in several ways, Try them,

== ko= [2:4;6;8;10]

or

10 ]

or, by transposing a row vector with the ' operator,
= b= [ 24 & 8 10 1

The result in all three cases will be

Iy =

oy s [

B0

foek



| Chapra: Appliad Numerical | 2 MATLAB Fundamentals Taxt 5 Tha MR-l
Methods with MATLAB for Campisnas, 2004
Engineers and Scientists

2.2 ASSIGNMENT 19

A matrix of values can be assigned as follows;

== A = [T 23 ;4586 ;78 9]

h =
1 2 3
d 5 f
T 8 g

In addition, the Enter key (carriage retwn) can be used to separate the rows, For example,
in the following case, the Enter key would be struck after the 3, the 6 and the | to assign the

matrix;
== b o= [1 2 3
4 5 &
78 9]

At any point in a session. a list of all current variables can be obtained by entering the
wno command:

== who

Your variables are:
B a ans b o

or, with more detail. enter the wheos command:

== wWhos
Mame: Zize Eytes Class
B Ix3 72 double array
& 1xh £ double arrvay
ansg 1xl & double array
h hGul 40 double array
# Ixl 1e  double array (complex)

Grand total iz 21 elements using 176 bhvres

Note that subscript notation can be used to access an individual element of an array.
For example, the fourth element of the column vector & can he displayed as

== Dld}

There are several buili-in functions that can be used (o create matrices, For example,
the ones and zeros functions create vectors or matrices filled with ones and zeros,
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respectively, Both have two arguments, the first for the number of rows and the second for
the number of columns. For example, o create a 2 - 3 mairix of zeros:

»» E = zerozil,3}

L e
oo
o S

Similarly, the ones function can be used to create a row vector of ones:

== 1 o= onesi(l, 3}

o=

2.2.3 The Colon Operator

The colon operator is a powerful tool for creating and manipulating arrays, I a colon is
vsed to separate two numbers, MATLAB generates the numbers between them using an
increment of one:

W
W
T
i
o

1 2 3 5 5

If colons are used to separate three numbers, MATLAB generates the numbers between the
first and third numbers using an increment equal (o the second number;

1.0000 1.5000 2.0000 2.5000 3.0000

Note that negative increments can also be used
== 0= 10:-1:5

ro=

-1

10 9 B é 5

Aside from creating series of numbers, the colon can also be used as a wildcard 10 se-
lect the individual rows and columns of a matrix, When a colon is used in place of a spe-
cific subscript. the colon represents the entire row or column. For example, the second row
of the matrix A can be selected as in

e B2, 1)

ans =

4 5 &
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2.3

We can also use the colon notation 1o selectively extract a series of elements from
within an array, For example, based on the previous definition of the vector +:

an b(2:d)
alls =
9 3 ?
2.24The - - - and - - - - Functions

The linspace and Logsnace functions provide other handy tools o generaie vectors of
spaced poinis. The 1inspace function generates a row vector of equally spaced points. It
has the form

linspace( -, -, -]
which generates - points between - - and - - . For example
== linspace{(d,1,6)

alld =

o 0,200 0.4000% 0. 6000 0.8000 1.0000

It the - is omitted, the function automatically generates 100 points.
The L ogspace function generates a row vector that is logarithmically equally spaced.
It has the form

logspace( , ~+, -]

which generates - logarithmically equally spaced points between decades 10 and 10,
For example,

=»» logspace(-1,2,4)

arns

L1000 1.0G0¢ 1o, 0000 100,000

e}

If - is omitted, it automatically generates 50 points,

MATHEMATICAL OPERATIONS

Operations with scalar quantities are handled in a straightforward manner, similar to other
computer languages. The common operators, in order of priority, are

Exponentiction

Megation
* ) fulfipfication and division
Y Lefi division”
+ - Addition ond sublrackion

*Left division applics to matrix algebra. 1t will be discussed in detail later in this hook.
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These operators will work in calculator fashion, Try
== 2%pi

ans =
G.2832

Also, scalar real variables can be included:

=n v o= pilofd;
== oy " 2,45
ans =

G.55313

Results of calculations can be assigned 1o a variable, as in the next-to-last example, or sim-
ply displaved. as in the last example.

As with other computer calculation, the priority order can be overridden with paren-
theses. For example, because exponentiation has higher priority then negation, the follow-
ing result would be obtained:

> oy = -4 ~ 2
o=
18
Thus. 4 is first squared and then negated. Parentheses can be used to override the priorities

as in

=y o= (-4) 7~ 2

Calculations ean also involve complex quantities. Here are some examples that use the
values of = {2 + 41 andv (16} defined previously:

== 4 T K

ansg =

Ao0000 41200001
== 1 ) x
ans =

G.1000 - 0.,20001
N

ars =
-12.0000 +16.00001

Mo Y

13.0000 + &.00001

The real power of MATLAB is illusteated in its ability 1o carry out vector-matrix cal-
culations, Although we will describe such caleulations in Chap, 7, it is worth inroducing
some of those manipulations here,
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The inner product of two vectors (dot product) can be caleulated using the * operator,
== a % b

ans =
110

and likewise, the outer product

== D * a

ans =
2 4 & B 1o
4 B 12 16 2
& 1z 18 24 30
H 16 24 3z i
10 20 30 49 50

To further illustrate vector-matrix multiplication, first redefine 2 and b

== oa = [1 2 31y
and

== b= [4 5 &6]';
Now, try

als =
an 3a 42
or
== A Y b
ans =
2
77
122

What happens when the dimensions are not those required by the operations? Try
== & Y a
MATLAB automatically displays the error message;

TTT Error using == mbimes
Inner macrix dimensions must agree.

Matrix-matrix multiplication is carried out in likewise fashion:

== A * A

ans =
a0 36 42
[515] 21 95
102 1286 150
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Mixed operations with scalars are also possible;

== ASpi

ansg =
G.3183 OL.E3ER 0.5540
1.2732 1.35815 1.5%05949
2.2282 2.546% 2.8648

We must always remember that MATLAB will apply the simple arithmetic operators
in vector-matrix fashion if possible. At times, you will want to carry out calculations item
by item in a matrix or vector. MATLAB provides for that too. For example,

== A " 2

ans =
30 16 4z
L) 1 g6
102 126 150

results in matrix multiplication of & with itself.
What if you want to square each element of 27 That can be done with

~

== A . &

1 i 2
1s 25 36
49 ad a1
The . preceding the ~ operator sigmifies that the operation is to be carried out element by
clement. The MATLAB manuval calls these array aperations. They are also often referred
Lo as element-by-element operations.
MATLAB contains a helpful shortcut for performing calculations that you've already
done. Press the up-arrow key. You should get back the last line you typed in.

= B 7 2

Pressing Enter will perform the calculation again, But you can also edit this line. For
example, change it tw the line below and then press Enter,

== A L™ 3

ans =
1 g8 27
Gl 125 216
343 hlz r2a

Using the up-arrow key. you can go back to any command that you entered. Press the up-
arrow until you get back the line
Iy * a

Alternatively, you can type b and press the up-arrow once and it will automatically bring
up the last command beginning with the letier b, The up-arrow shorteut is a quick way 1o
fix errors without having to retype the entire line.
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2.4 USE OF BUILT-IN FUNCTIONS

MATLAB and its Toolboxes have a rich collection of built-in functions. You can vse online
help to find out more about them. For example, if you want to learn about the 1oz function,

tvpe in

=x hnelp log

LOG Hatural logarithm,
LOG{X) is the natural logarithm of the elements of X.
Complex results are produced if X is nob positive.

See also LOG2, LOGLH, EXP, LOGM.
For a list of all the elementary functions, type
== help elfun

One of their important properties of MATLAB s buili-in functions is that they will op-
erate directly on vector and matrix quantities. For example, try

= logih)

ans =
o 0.6931 l.0%8¢
38&3 1.60%4 Jats
1.5945% 2. 0794 2.1972

and you will see that the natural logarithm function is applied in array stvle, element by
element, to the matrix 2. Most functions, such as sorz, abs, sin, acoz. canh, and exp,
operate in array fashion, Certain functions, such as exponential and square root, have ma-
trix definitions also. MATLAB will evaluate the matrix version when the letter m is ap-
pended to the function name. Try

== HOTCm{A}

ars =
0.44%8 + 0.7e231 O.852e + 0.20681 0.6555 - 0.34871
1.0185 + 0.08421 1.2515% + 0.02281 1.4844 0.03B51
1.5873 - 0.5%9404 1.9503 - 0.1elli L3134 4 0.2V

B

A common use of functions is to evaluate a formula for a series of arguments. Recall
that the velocity of a tree-falling bungee jumper can be computed with [Eq. (1.9)]:

fem [gcq
- —tanh —
‘J{.‘tf (‘\f in )

where v is velocity (m/s), g is the acceleration due to gravity (9.81 m/s’), m is mass (kg
;15 the drag coefficient (kg/m), and 7 is time (s).
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Create a column vector © that comtains values from 0 1o 20 in steps of 2:

W
I

T
i

[D:2:207°

[T

- -t
[N O S T T Y

an

13
20
Check the number of items in the © array with the 1engtk function:
== lengthio)

ans =

Assign values to the paramelers:
== g = 9,81; m = 68.1;y od = 0.25;

MATLAB allows vou to evaluate a formula such as v - f{r), where the formula is
computed for each value of the ¢ array. and the result is assigned to a corresponding posi-
tion in the v array. For our case,

== % = agriig*n/od) *tanh{sgro (grod/m*L)

W=

0
18,7202
33,1118
42 0762
46.9575
4% 4214
50,6175
51,1871
531.4560
51.5823
5l.6416

2.5 GRAPHICS

MATLAB allows graphs to be created quickly and conveniently, For example, to create a
graph of the ¢ and + arrays from the data above, enter

== plot (L, w)
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The graph appears in the graphics window and can be printed or transferred via the clip-
board to other programs,

60

80 2

10— =

0 | | | | | | | | |
0 2 4 6 HHERAE 6 R R, S [ r

You can customize the graph a bit with commands such as the following:

== Litlae{'Flot 0f « versus ¢}
z» wlabhel{*Valuesz of t')
== oywlabel ("Valuss of v')

== grid

Piot of © versus
60
50 =

e

Walues of
g
\k

20 !

T e R e D e s D e
Values of r

The plot command displays a solid line by default, If vou want to plot each point with
a symbol, you can include a specifier enclosed in single quotes in the plon function,
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2.6

TABLE 2.1 Specifiers for colors, symbols, and line types.

Colors Symbaols Line Types
Blue ks Point . Solid -
Green a Circls o [tz :
Red r Kemark * [rashdo -
Cyan c Plus + [ashed -
hagenta m St *
el ¥ Squars =
Block k Digmand d

Triangleldown) W

Trianglefuni -

Triangie|leh| -

Triangle|right) »

Pertogrom I

Hexagrom h

Table 2.1 lisis the available specifiers. For example, if vou want io use open circles enter
== plot (b, v, "o')

MATLAB allows you to display more than one data set on the same plot. For example,
if you want to connect each data marker with a straight line you could type

> UUt “-r V. Ly v, ‘ot

There are other features of graphics that are useful—for example, plotting objects
instead of lines, families of curves plots, plotting on the complex plane, multiple graphs
windows, log-log or semilog plots. three-dimensional mesh plots, and contour plots, As
described next. a variety of resources are available 1o learn about these as well as other
MATLAB capabilities.

OTHER RESOURCES

The foregoing was designed to focus on those features of MATLAB that we will be using
in the remainder of this book. As such. it is obviously not a comprehensive overview of all
of MATLARB's capabilities. If you are interested in learning more. vou should consult one
of the excellent books devoted to MATLAB (e.g.. Palm, 2004).

Further, the package itself includes an extensive Help facility that can be accessed by
clicking on the Help menu in the command window. This will provide vou with a number
of different options for exploring and searching through MATLABs Help material. In ad-
dition. it provides aceess to a number of instructive demos.

As described in this chapter, help is also available in interactive mode by typing the
help command followed by the name of a command or function.

If you do not know the name. vou can use the Lookfor command to search the
MATLAB Help files for occurrences of text. For example, suppose that you want to find all
the commands and functions that relate to logarithms, you could enter

»» lookfor logarithm

and MATLAB will display all references that include the word logarichm,
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Finally, you can obtain help from The MathWorks, Inc.. website at www.mathworks,
com, There you will find links to product information, newsgroups, books, and technical
support as well as a variety of other vseful resources,
PROBLEMS

2.1 Asimple electric circuit consisting of a resistor, a capac-
itor, and an inductor is depicted in Fig. P2.1. The charge on
the capacitor ¢ir) as a function of time can be compured as

1 R
VIC (E) ‘
where t - time. g - the initial charge, R - the resistance,
L - inductance, and - capacitance. Use MATLAB to
generate a plot of this function from ¢ - 0 o 0.5, given that
gy M0OR- 500L- S and O 1O .
2.2 The standard normal probability density function is a
bell-shaped curve that can be represented as

gy goe M cos

. __-Jl.lj

Hey EE
Use MATLAB o generate a plot of this function from
2+« Fro 3 Label the ordinate as frequency and the ab-
SCIS53 85 I

2.3 Use the 1inspace function to create vectors identical
to the following created with colon notation:

(a) £+ 5:3:20

thy = -3:2

2.4 Use colon notation to create vectors identical to the
following created with the Linspace funetion:

{a) v+ linspacsi(-2,1,5)

{h) r- limspace(q,,7)

2.5 If a force F (N} is applied to compress a spring, its dis-
placement x (m) can often be modeled by Hooke™s law:

F- okx

FIGURE P2.1

e
Switch - :
Battary i: vy _‘: Capacitor % Inductor
+ 'v
A

Resistor

where & - the spring constant (N/m). The potential energy
stored in the spring U7 () can then be computed as

!
- -k
3 i

Five springs are tested and the following data compiled:

+N - 12 15 g |2 L&
ym 0013 0020 0009 Q0010 02 Q00

Use MATLAB o store F and x as vectors and then compute
vectors of the spring constants and the potential energies.
Use the max function 1o determine the maximum potential
cnergy.

2.6 The density of freshwater can be computed as a function
of temperature with the following cubie equation:

p- 55289 10 TS 85016 10 T
- 6.5622- 10 *Tc - 0.99987

where p - density (gfem’) and T - temperature (°C), Use
MATLAB to generate a vector of temperatures ranging from
32 °F to 93.2 °F using increments of 2.6 "F. Convert this vec-
tor to degrees Celsivs and then compute a vector of densities
based on the cubic formula. Create a plot of o versus T,
Recall that T - 5/%Ty - 31D,

2.7 Manning’s equation can be used to compute the velocity
of water in a rectangular open channel:

§7 BH ¢
n B- 2H

where L' velocity (mvs), 8+ channel slope, n - roughness
coefficient, B - width (m}, and H - depth (m). The follow-
ing data is available for five channels:

0.035 0000 10 2
0020 o002 g I
[ARAD CLoato 20 |5
0030 o000 24 3
0022 00003 15 2.5
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Store these values in @ matrix where each row represents one
of the channels and each column represents one of the para-
meters. Write a single-line MATLAB sttement to compute
a column vector containing the velocities based on the
vitlues in the parameter matrix,

2.8 It s general practice in engineering and science that
equations be plotted as lines and discrete data as symbols.
Here is some data for concentration (e versus time (¢) for the
photedegradation of aguecus bromine:

210 Here is some wind tunnel data for force (F) versus
velocity (v):

20 30 40 50 &0 FO 80
JO03BG 550 410 1220 B30 1450

.mfs 10
N 25

-, min 10 20 30 Af) 50 &l
» ppm 3.4 2.5 (<] .3 .0 0

This data can be described by the following function:
oo ARy DO

Use MATLAB to create a plot displaying both the data
{using square symbols) and the function (using a dashed
line}. Plot the function for r- 0 to 70 min.

1.9 The semilogy function operates in an identical fash-
ion to the plot function except that a logarithmic (base-10)
scale 15 used for the v axis. Use this function to plot the
data and function as described in Prob. 2.8, Explain the
results.

This data can be described by the following function:
Foo0.27410"

Use MATLAB to create a plot displaving both the data
(using diamond symbols) and the function (using a doted
ling . Plot the function for - 0o 10 mds,
2.11 The 1oglog function operates in an identical fashion
tor the plot function except that logarithmic scales are used
for both the x and v axes. Use this function to plot the data
and tunction as described in Prob. 2010, Explain the results.
2,12 The Maclauwrin series expansion for the cosine is

EEEE S L
Use MATLAB 1o create a plot of the cosine (solid line) along
with a plot of the series expansion (dashed line) up to and in-
cluding the term x°/6!. Use the buili-in function factor-
ial in computing the series expansion, Make the range of
the abscissa from v - Qw3 /2,

COsx -
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Programming with MATLAB

CHAPTER OBJECTIVES

The primary objective of this chapter is to learn how to write M-file programs to
implement numerical methods. Specific objectives and topics covered are

®*  Learning how to create well-documented M-files in the edit window and
invoke them from the command window.

®*  Understanding how to set up M-files so that they interactively prompt users for
information and display resulis in the command window.

®*  Learning how to write clear and well-documented M-files by employing
structured programming constructs to implement logic and repetition.
Understanding what is meant by vectorization and why it is beneficial.
Understanding how functions can be passed to M-files.

YOU'VE GOT A PROBLEM

n Chap. I, we used a force balance to develop a mathematical model w predict the
fall velocity of a bungee jumper. This model took the form of the following differential
equation:
du £ 5
—_ r . —
dt 8 m
We also learned that a numerical solution of this equation could be obtained with Euler’s

method:
dy;
1y -y —
11 i di

This equation can be implemented repeatedly to compute velocity as a function of
time. However, to obtain good accuracy, many small steps must be taken. This would be

3
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3.1

EXAMPLE 3.1

extremely laborious and tme consuming to implement by hand, However, with the aid of
MATLAB, such calculations can be performed casily.

S0 our problem now is 1o figure out how o do this, This chapter will introduce you
10 how MATLAB M-files can be used 1o obtain such solutions,

M-FILES

The most common way to operate MATLAB is by entering commands one at a time in the
command window, M-files provide an aliernative way of performing operations that
greatly expand MATLAB's problem-solving capabilities, An M-file contains a series of
statements that can be run all at once, Note that the nomenclature “M-file” comes from the
fact that such files are stored with a . m extension, M-files come in two flavors: script files
and function files:

3.1.1 Script Files

A seript file 1s merely a series of MATLAB commands that are saved on a file. The script
can be executed by typing the file name in the command window or by invoking the menu
selections in the edit window: Debug, Run.

Script File

Problem Statement. Develop a script file to compute the velocity of the free-falling
bungee jumper.

Solution. Open the editor with the menu selection: File, New, M-file. Type in the follow-
ing statements to compute the velocity of the free-falling bungee jumper at a specific time
[recall Eq. (1.9]:

g = 9.8l m = E8.1; £ = 12; cd = 0.25;
vo= oagrilg * m /S ood) * tanhisgrtig = od / m) * L}

Save the file as scriptdems . m. Return to the command window and type in
=xzoriptdemn

The result will be displayed as

cn e
B0.el175

3.1.2 Function Files

Function fifes are M-files that start with the word function. In contrast to script files, they
can accept input arguments and return outputs. Hence they are analogous to user-defined
functions in programming languages such as Fortran, Visual Basic or C.

The syntax for the function file can be represented penerally as

function outvar = funcnams{argliist)
% helpoomments

statements

outvar = value
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EXAMPLE 3.2

where outvar = the name of the output variable, funcname = the function’s name,
arglist = the function’s argument list (i.e., comma-delimited values that are passed into
the function), helpoomment s = ext that provides the user with information regarding the
funetion (these can be invoked by typing Felp funcname in the command window), and
statemencs = MATLAB statements that compuie the vaiue that is assigned (o oue var,

The M-file should be saved as funcname. m The Tunction can then be run by typing
funcaame in the command window as ilfustrated in the following example. Note that even
though MATLAB is casc-sensitive, vour compuler’s operaling system may not be,
Whereas MATLAB would treat function names like freefallvel and Fresrallvel as
two different variables, your operating system might not.

Function File

Problem Statement.  As in Example 3.1, compute the velocity of the free-falling bungee
jumper. but now we will use a function file for the task.

Solution.  Type the following statements in the file editor:

function velocity = freefallvelim, od, t}

% freefallvelim, od, t) computes the free-fall velccity (mps}
% of an cbiject with second-order drag.
% imput s

% m = mass (kg

% od = zegond-order drag coefficient {(kg/m)

% L o= Lime (3)

% output:

% velacity = downward welacity (mfs)

g = 9.81; % acoeleration of gravity

velocity = sgriig * m / odl * tanh(sgrt{g * cd / m} * t);

Save the Nle as fresfallvel . m To invoke the function. return to the command window
and type in

=r [reefallvel (68.1,0.25,12)
The result will be displayed as

alls

50.617%

(One advantage of a function M-file is that it can be invoked repeatedly for different
argument values. Suppose that we wanted to compute the velocity of a 100-kg jumper
after 8 s

== freefallvel (100,0.25,8)
ans =
53,1878

To invoke the help comments type

= help freefallvel
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which results in the comments being displayed

freefallvel (m, od, t) computes the frese-fall velocity {mps)
of an object with second-order drag.
input:
m = mass (kg
= gecond-order drag coefficient (kg/mi
o= bime (5]
output :
velooity = downward velooity (m/s)

i

3.2

Function M-files can return more than one result, In such cases, the variables contain-
ing the results are comma-delimited and enclosed in brackets, For example, the following
function, stats.m, compules the mean and the standard deviation of a vector:

function [mean, stdev] = stabsix)

n = lengthixl;

mean = Sumixl Sy

atdev = sgriisum{ (x-mean)  "“Z/(n-1)1);

Here is an example of how it can be applied:
=>y = [8 5 10 12 6 7.5 41;

== [m,3] = zbats{y)
m =

T.5000
5 =

2.813%7

Because seript M-files have limited utility, function M-files will be our primary pro-
gramming ool for the remainder of this book. Hence, we will often refer 1o function
M-files as simply M-files,

INPUT-OUTPUT

As in Seetion 3.1, information is passed into the function via the argument list and is out-
put via the function’s name. Two other functions provide ways to enter and display infor-
mation directly using the command window.

The irpur Function, This function allows you to prompt the user for values directly
from the command window. Its syntax is

n = input!('promptsrring'l

The function displays the prompr st ring, waits for keyboard input, and then returns the
value from the keyboard, For example,

m = inpub('Mass {kgl: ")
When this line is executed, the user is prompted with the message
Mass (kg):

If the user enters a value, it would then be assigned to the variable @,
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The inpur function can also return user input as a string. To do this, an *=- s ap-
pended o the function’s argument list. For example,
name = ihput ['Enter your name: ", 's')
The disp Function.  This function provides a handy way to display a value. Its syntax is
digplvalue)
where value = the value you would like to display. It can be a numeric constant or vari-
able, or a string message enclosed in hyphens., [ts application is illustrated in the following
example.
EXAMPLE 3.3  An Interactive M-File Function

Problem Statement.  As in Example 3.2, compute the velocity of the free-falling bungee
Jumper, but now use the input and disp functions for input/output.

Solution.  Type the following statements in the file editor:

function velocity = fresfallinteract
treefallinteract{)
computes the free-fall velooity of a bunges junper
with second-order drag.

Lo T

% inpub: interactive [rom command window
% output:

% velopity = downward velocity (mfs)

g = 9.81; % acceleration of gravicy
m o= input{ 'Mass (kgl: ')

od = input{*Drag coefficient {kg/m): '};
L= input{"Tims (8] "};

digp(' v

disp{'Velooity (m/fal:}
displsgroci{e * m / ocd}l * tanhisgrtig * od /f m) * ©)}

Save the file as frecfallinteract . m To invoke the function, return to the command
window and type in

=» freefallinteract

Mazs (kgl: &88.1

Drag coefficient (kgimy: 0.2%

Time (=): 12

Velooity {(mis):
50.617%

Note that functions can call functions. For example, the M-file in the preceding exam-
ple could have heen written as {without comments)

function velocity = freefallfunctfunc
o = 9.81; % acceleration of gravity
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m o= inpub('Mass {kgl: ")
od = inputi'Drag coefficient (kKgimi: ')
o= inpubt('Time {s): ')
disp{* '}
digp{*velocicy {mfs):s')

dispivellg,m,ocd, ci)

function v = veli{g,m,od,t}
agrblg * m ¢ cdl * tanhisgreodg = cd / m) * t);

The tprinct Function.  This function provides additional control over the display of
information. A simple representation of its syntax is

fprintf{'format*, =, ...l

where format is a string specifyving how yon want the value of the variable x to be dis-
played. The operation of this function is best illustrated by examples.

Asimple example would be to display a value along with a message. For instance, sup-
pose that the variable velooity has a value of 50,6175, To display the value using eight
digits with four digits to the right of the decimal point along with a message, the statement
along with the resulting output would be

== fprintfi'The velocity is %8.4%2 m/s'\n', veloocity)
The velocity is 50,6175 mis

This example should make it clear how the format string works. MATLAB starts at the
left end of the string and displays the labels until it detects one of the symbols: £ or . In
our example, it first encounters a % and recognizes that the following text is a format code.
As in Table 3.1, the formar codes allow you to specify whether numeric values are dis-
played in integer. decimal, or scientific format. After displaying the value of velocity,
MATLAB continues displaying the character information (in our case the units: m/ =) until
it detects the symbol . This tells MATLAB that the following text is a control code. As in
Table 3.1, the contral codes provide a means to perform actions such as skipping to the next
line. If we had omitted the code n in the previous example. the command prompt would
appear at the end of the label m/ = rather than on the next line as would typically be desired.

TABLE 3.1 Commanly used farmat and confral codes employed with the torinct

function.
Format Code Description
%d Indezas Frarrmat
L Scientific format with lowercose &
3E Scientific farmet with ppperoose
%f Decima! forma
i The more compact of $e or %f
Conirol Code Description
LT Short new fine

Wk TCIb
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3.3

The forins £ function can also be used to display several values per line with differ-
ent formats. For example,

== [fprintf{'%5d BLO.3L %8.52 o', 100,2%pi,pl);
100 fL.283 3.1415%9e+000

It can also be vsed 1o display vectors and matrices. Here is an M-file that enters two
sets of values as veetors, These vectors are then combined into a matrix, which is then dis-
plaved as a table with headings:

funcrion Ifprintfdemo

x o= [1 2 3 4 5];

v o= [20.4 12.6 17.8 88,7 120.471;

z = [=vl;

fprinbf{: S yhn'l;

fprintf{'%5d %10.3fv\n',.z);

The result of running this M-file is

== fprintidemo

® ¥
1 20.400
2 12.600
3 17,800
4 BE.TO0
5 120.400

STRUCTURED PROGRAMMING

The simplest of all M-files perform instructions sequentially. That is, the program state-
ments are executed line by line starting at the top of the function and moving down to the
end. Because a strict sequence is highly limiting, all computer languages include state-
ments allowing programs to take nonsequential paths. These can be classified as

» [Decisions (or Selection). The branching of flow hased on a decision.
» Loops (or Repetition}. The looping of flow to allow statements to be repeated.

3.3.1 Decisions

The ¢ Structure. This structure allows you to execute a set of statements if a logical
condition is true. Its general syntax 1s

if condicion
statements
and

where condie fonis a logical expression that is either true or false, For example, here is a
simple M-file to evaluate whether a grade is passing:

Funchion gout = grader grads)

% grader {grade) :

% determines whether grade is passing

% input:

% grade = numerical value of grade (0-100)
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¥ output:

% digplayed message

if grade »>= &0
dizsp{'passing grade:')
displarade)

end

The following illustrates the result
== grader(95.6)
paceing grade:
95,5000
For cases where only one statement is executed, it is often convenient to implement
the i £ structure as a single line,
if grade = 60, dispi'passing grade: '}, end

This structure is called a single-line if. For cases where more than one statement is imple-
mented, the multiling if structure is usually preferable because is it easier 1o read,

Error Function. A nice example of the utility of a single-line if is to employ it for rudi-

mentary error trapping. This involves using the erzor function which has the syntax,
arrori{msg)

When this function is encountered, it displays the text message m=g and causes the M-file

to terminate and return to the command window.

An example of its use would be where we might want to terminate an M-file to avoid
a division by zero. The following M-file illustrates how this could be done:

unction £ = errortest(x)
fx == 0, error{*zero value encountered'}, and

== rh

= L/x;
If a nonzero argument is used, the division would be implemented successtully as in

> BrEQroestilo)
s =
G.1000
However. for a zero argument, the function would terminate prior to the division and the
error message would be displayed in red rypeface:

== erroctest (0]

TP OError using === errartest

zern valus encountered

logical Conditions.  The simplest form of the condicion is a single relational expres-
sion that compares two values as in

value, relation value,

where the valo=s can be constants, variables, or expressions and the relacion is one of
the relational operators listed in Table 3.2,
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TABLE 3.2 Summary of relational operators in MATLAB,

Example Operator Relationship

x == @ == Equal

unit ~= 'm’ e Poi squol

a = 0 z less than

s =t = Greoter than

3.9 == aj3 = less than or equal o

r == 0 »= Sreoter than or equal o

MATLARB also allows testing of more than one logical condition by employing logical
operators, We will emphasize the following:

s - {Not). Used to perform logical negation on an expression.
~EXPres310n

If the expression is true, the result is false. Conversely, if the expression is false,
the result is true.
s & {And). Used 1o perform a logical conjunction on two expressions,

axpression, & expression.

If both expressions evaluate to true, the result is true. If either or both expressions
evaluates to false, the result is false.
o | {Or). Used to perform a logical disjunction on two expressions,

expression, | expression
If either or both exoressions evaluate o true, the result 1s troe.

Table 3.3 summarizes all possible outcomes for each of these operators, Just as for
arithmetic operations, there is a priority order for evaluating logical operations, These
are from highest to lowest: -, & and |, In choosing between operators of equal priority,
MATLAB evaluates them from left to right. Finally, as with arithmetic operators, paren-
theses can be used to override the priority order,

Let's investigate how the computer employs the priorities to evaluate a fogical expres-
sion. Ifa = 1.0 = 2,x = Loandy = 'be,evaluate whether the following is true or false:

a *h=06&D0b==2 &2 =71 -0y = "'4a")
TABLE 3.3 A truth table summarizing the possible outcomes for logical operators

employed in MATLAB. The arder of priorify of the operators is shown at
the top of the table.

Highest - Lowest
x ¥ -x &y xly
T T F T T
T F F F T
F T T ; F
F F T F F




| Chapra: Appliad Numerical | 3. Programming with Taxt 5 Tha MR-l

Methods with MATLAB for ~ MATLAB Campisnas, 2004
Engineers and Scientists
40 PROGRAMMING WITH MATLAB

To make 1t easier 1o evaluate, substitute the values Tor the variables:
1 * 2 =0 & 2 ==2 &1 =71 =0k = 'd"'}

The first thing that MATLAB does is to evaluate any mathematical expressions. In this
example, there is only one: -1 + I,

-2 =0 &8 2 =258 1="71~('"h' = 'd"}
Next, evaluate all the relational expressions

a 0 & 2 == 2 & L =71 ~{'b" = "d"}

F e T 1] F P~ F

Al this point, the logical operators are evaluated in priority order. Since the - has highest
priority, the last expression (~7) is evaluated first 1o give
F&T&F|T

The & operator 15 evaluated next. Since there are two, the left-to-rizht rule is applied and
the first expression (F & 7T)1s evaluated:

F&fF | T
The & again has highest priority
F | T

Finally, the | is evaluated as true. The entire process is depicted in Fig. 3.1

FIGURE 3.1
A steprbrestep evaluation of a complex dacision,

R e e e e e e P s
l 1 1 l 1 Substitute constants
gEEn et e e e s s B s e R
Evaluate mathematical
expressions
2 s
Evaluate relational
EXPTEsSsSIons
b & : % ; s
l
Iﬁ,—l

expressions

& | l Evaluate compound
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EXAMPLE 3.4

The if...=1=e Structure.  This structure allows you to execute a set of statements if a
logical condition is troe and to execute a second setif the condition is false. Its general syn-
[ax is

if condition
Stalement s,
mloe
statements,
and

.alze

The if...e 1f Structure. It often happens that the false option of an 1. .
structure is another decision. This type of structure often occurs when we have more than
two options for a particular problem setting. For such cases, a special form of decision
structure, the 1 f. . .eleeif has been developed. It has the general syntax

if condition,
srtatemant s,

elgseif condition,
Fratements,

elself condition,
sratemants.,

glae
statement s, ..
ard

if Structures

Problem Statement.  For a scalar, the built-in MATLAB =ign function returns the sign
of its argument (- 1. 0, 1) Here's a MATLAB session that illustrates how it works:

e Signi2S.a

== signild]

alld =

0

Develop an M-file 1o perform the same function,
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Solution.  First, an i £ structure can be used to return 1 if the argument is positive:

funcrtion sgn = mysignix)
¥ omyeignix) returns 1 1if x is greater than zero.
if ¥ = 0

sgrn o= 1p

end
This function can be run as
= omysign{df.al

aArlsE =

Although the function handles positive numbers correctly, if it is run with a negative
or zero argument, nothing is displaved. To partially remedy this shortcoming, an
if...else siructure can be used to display -1 if the condition is false:

function sgn = mysignix]
B omysignix) returns 1 1if x is greater than zero.

& -1 1f x is less than or egual to zero
if = = 0
sgn = 1y
alae
2gn = -1;
e

This function can be run as
== mysiogn(-0.778}

alls =

Although the positive and negative cases are now handled properly, -1 is erroneously
returned if a zero argument is used. An i, . e lseif structure can be used to incorporate
this final case:

function sgn = mysign(x)
% omysigni{x) returns 1 1f = is greater than zero.

% -1 if % i= lessz than zaro.
% 0 if = 13 egual to zero.
if ¥ = 0

agn o= 1
eleeif x < 0

egn o= -1;
alae

sgnn = O;

end
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The function now handles all possible cases. For example,

=x mysign {0}

3.3.2 Loops

As the name implies, loops perform operations repetitively. There are two types of loops,
depending on how the repetitions are terminated. A for foop ends after a specified number
of repetitions. A while foop ends on the basis of a logical condition.

The for Structure. A for loop repeats statements a specific number of times. Its general
syntax is

for index = startistep:finish
stalements
end

The for loop operates as follows. The {ndesx is a variable that is set at an initial valoe,
start, The program then compares the fndex with a desired final value, finish IF the
index is less than or equal to the finish, the program executes the scacement s. When
it reaches the end line that marks the end of the loop, the index variable is increased by
the step and the program loops back up to the for statement. The process continues until
the index becomes greater than the £inish value, Atthis point, the loop terminates as the
program skips down to the line immediately following the end statement.

Note that if an increment of 1 is desired (as is often the case), the st ep can be dropped.
For example,

for i = 1:5
dizpii)
and

When this executes. MATLAB would display in succession, 1, 2, 3, 4, 5. Inother
words, the defanlt stepis 1.

The size of the =« can be changed from the default of 1 to any other numeric value.
It does not have to be an integer. nor does it have to be positive. For example. step sizes of
0.2, -1, or -5, are all acceptable.

It a negative =tep is used, the loop will “countdown™ in reverse. For such cases, the
loop’s logic is reversed. Thus, the fini=his less than the starr and the loop terminates
when the index is less than the £in:sh For example,

for 7 = 10:-1:1
dispii)
and

When this executes, MATLAB would display the classic “countdown™ sequence: 10, 9,
g, 7, 6, 5,4, 3, 2, 1.
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EXAMPLE 3.5 Using a tor Loop to Compute the Facterial

Problem Statement.  The factorial is computed as

o1
-1
201-2- 2
1 2-3-6
4l 1- 2- 3. 4. 24
- 2- 3. 4. 5- 120

50

Develop an M-file to compute the factorial.!

Solution. A simple function to implement this calculation can be developed as

function fout = factorind
% factorin):
% Computes the product of all the integers from 1 to n.

®x = 1;

for i = l:n
x o= x % oig

el

fout = u;

=latsl

which can be run as

== factor(s)

This loop will execute 5 times (from | to 5). At the end of the process, = will hold a value
of 5! (meaning 5 factorialor 1 - 2 3 4. 5. 120y

Vectorization., The for loop is easy to implement and understand. However, for
MATLARB, it is not necessarily the most efficient means to repeat statements a specific
number of times, Because of MATLARB’s ability to operate directly on arrays, vectorizarion
provides a much more efficient option. For example, the following for structure:

o

i = 0;
for © = 0:0.02:50
i =i + 13
viil = cosit);
end

INote that MATEAD has 2 buill-in Tunction factorial thal performs this compataiicn,
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can be represented in vectorized form as

t o= 0:0.02:50;
¥ = 5 * cos{t);

It should be noted that for more complex code, it may not be obvious how 1o vectorize the
code. That said, wherever possible, vectorization is recommended,

Preallocation of Memory., MATLAB automatically increases the size of arrays every
time you add a new element. This can become time consuming when you perform actions
such as adding new values one at a time within a loop. For example, here is some code that
sets value of elements of v depending on whether or not values of - are greater than one:

L = 0:.0L:5;
for 1 = l:lengthig)
if biil=1
wii) = 1/ti{i);
elas
viil = 1;
and
ard

For this case, MATLAB must resize v every time a new value s determined. The follow-
ing code preallocates the proper amount of memory by using a vectorized statement o
assign ones 1oy prior o entering the loop,

L= 0:.0L:5;

v = onegisizeltl);

for 1 = L:lengthit)
T N
yill = 1/70(i);
@it
end

Thus, the array is only sized once. In addition, preallocation helps reduce memory frag-
mentation, which also enhances efficiency.

The w - Structure,  Awhile loop repeats as long as a logical condition is true. Its gen-
eral syniax is

while condicion
srarements
and

The statements between the while and the end are repeated as long as the condition
15 true. A simple example is

function fout = whiledemo()
¥ = B
while x = 0

¥ o= M 3;

dispix)

[=ialsl
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This function can be run as

== whiledeno
¥ o=
g

¥
-

The while. .. breax Structure.  Although the while structure is extremely useful, the

Fact that it always exits at the beginning of the structure on a false result is somewhat con-

straining. For this reason, languages such as Fortran 90 and Visual Basic have special struc-

tures that allow loop termination on a true condition anywhere in the loop. Although such

structures are corrently not available in MATLAR, their functionality can be mimicked by

a special version of the while loop. The symtax of this version, called a whiie . . |
reak structire, can be writlen as

while (1}
statements
it pondition, brealk, end
statements

end

where the condicionis a logical condition that tests troe or Talse, Thus, a single line if
is used 1o exit the loop if the condition tests troe, Note that as shown, the break can be
placed in the middle of the loop (.c., with statements before and after ity Such a strocture
is called a midtest loop,

If the problem required it we could place the break at the very beginning (o create o
pretest loop, An example is

while {1)
If % = 0, break, end
® o= K 5

end

Notice how 5 15 subtracted from = on each iteration. This represents a mechanism so that
the loop eventually terminates. Every decision loop must have such a mechanism. Other-
wise it would repeat ad infinitum.

Alternatively, we could also place the 1. . break statement at the very end and cre-
ate a pasttest foop,

while {1}

X o= - h

if % « 0, break, end
end

It should be clear that, in fact, all three structures are really the same, That is, depend-
ing on where we put the exit (beginning, middle, or end} dictates whether we have a pre-,
mid- or postiest. 1t is this simplicity that led the computer scientists who developed
Fortran 90 and Visual Basic to favor this structure over other forms of the decision loop
such as the conventional while struciure,
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3.4 NESTING AND INDENTATION
We need to understand that structures can be “nested” within cach other, Nesting refers o
placing structures within other structures. As in the following example, a good example 15
to determine the roots of the quadratic equation,
EXAMPLE 3.6 Nesting Structures

Problem Statement.  The roots of a quadratic equation
fix) - ax?- by e
can be determined with the quadratic formula
2u

Develop a function to implement this formula given values of the coeffcients,

X -

Solution.  Top-down design provides a nice approach for designing an algorithm to com-
pute the roots. This involves programming up the general structure without details and then
refining the algorithm. To start, we first recognize that depending on whether the parameter
¢ is zero, we will either have “weird™ cases (e.g., single roots or trivial values) or conven-
tional cases using the quadratic formula. This “big-picture™ version can be programmed as
function guad = guadrootsia, b, <)

% guadraots{a, b, o):

% computes real and complex roots of guadrabic eguation

input s

e

% a = second-order coefficient
% b = first-order coefficient
% o = zero-order coefficient
% oubpur:
% rl = real part of first roob
% il = imaginary part of first root
% r?2 = real part of second root
% 12 = imaginary part of zecond roob
if a==10
Fwaird cases
eglze
Fguadratic formula
end

Next, we develop refined code (o handle the “weird” cases:

Fwelrd cases

if b ~= 0
Faingle roob
rl = -0 / b

alas

Htrivial solution
errorf "Trivial solution. Reenkber data'}
and



| Chapra: Appliad Numerical | 3. Programming with Taxt 5 Tha MR-l

Methods with MATLAB for ~ MATLAB Campisnas, 2004
Engineers and Scientists
48 PROGRAMMING WITH MATLAB

And we can develop refined code 1o handle the quadratic formula cases:
fguadratic formula

d=h "2 -4 *a*c

if o == O

Ereal roobs
rl = {-b & =groid)) 7/ {2 * ai
r2 = i(-h agrt(d)y /S (2 * a)
elee
toonplex roots
rl = -b / {2 * a)
r2 = rl
il = sgrtiabs{dl) /7 (2 * &)
i2 = -il
and

We can then merely substitute these blocks back into the simple “big-picture” frame-
work to give the final result:
function gquad = gquadrootsia, b, <l
% guadrocteia, D, o):

compubtes real and complex roots of gquadralic eguation

o

% input:

% a4 = second-order coefficient

% b = first-order coefficient

% ¢ = zero-order cosfficient

% poutput:

% rl = real part of first root

% il = imaginary part of first root
% r2 = real part of second roob

% 12 = imaginary part of second root
it a ==

iweird cages
LE bow=z10
f¥oingle root
rl o= =
elze
BErivial aodutian
error{tTrivial solucion. Try again'])
and

alae

Souadratic formuala
EE el e tdiscriminant
1 Q. ==0

Yreal roots

L= l=hor agrt (@] A A2l
ST A YRS ol 3 08 DEEE SR B
elae

fcomplex roots
]l - B ¢ { ® A
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delie i
11 = surtiabsid}} & 1d - * g}
Ty~ T |
e
and

As highlighted by the shading, notice how indentation helps to make the underlying
logical structure clear, Also notice how “modular”™ the structures are. Here is a command
window session illustrating how the function performs:

== gquadroots(l,1,1)

rl =

-0 5000
il =

N.8660
ra =

-0, 5000
i2 =

-0.8660
== guadraotsi1l,5,1)
rl =

-0, 2087
T =

-4, 7913

== gquadroots (0,5, 1)

-0.2000
== quadroots(0,0,0)
TP OETYraor using === guadroors
Trivial solution. Try again

3.5

PASSING FUNCTIONS TO M-FILES

There are many occasions when you would like a function to perform calculations using an
arbitrary function, The built-in feval and {nline functions can be vsed to accomplish
this rask,

The feval Function. The feval function provides an alternative means to evaluate a
function. It has the syntax

outvar = Teval ('funcname’, ardy, a8rds. ... |

where the function funcnams is evaluated at the values of the arguments, arg. Here is an
example:

== Gubtvar = feval{'cos', pi/sfel
which evaloates to

gutvar =
0.8660
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Note that this statement is equivalent to merely writing
== ooubtvar = cosi{pilfe)
The inline Function. The inline function provides a way to create a one-line func-
tion that dues not have to be stored in a separate M-file. It has the syntax
funcname = inlinel'expression', var,, var,, ... |
where funoname = the function’s name, exprezsion = the mathematical formula that is
1o be evaluated. and the var’s are names of the variables in the expression, I no var’s are
included, a single variable = is assumed. Here's an example of its application:
=» fx = inline{'cos(x) *sinix) ')
fx =
Inline function:
fxix) = cosix)*sinix}
== Dxpisa)
ans =
L4330
EXAMPLE 3.7 Passing Functions to M-iles

Problem Statement.  Develop an M-file to determine the average value of a function over
a range. IMustrate its use for the simple cubic equation:

flx) - 012500 1125x% . 2750 |
Selution.  This function can be plotted in MATLAB over the range from x - () to & with
the commands

== o= [0:0.1:87;
== £ = 0.125*x."°3 1.1285%%x.72 + 2.75%%x + 1;
=» plotix, £)

NS

35—

i T

1.5 i)
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The average value of the function can be computed with standard MATLAB com-
mands as

== meaniti}

ans =
2.5000

Inspection of the plot shows that this result makes sense,
We can write an M-file to perform the same computation:

function favg = funeavg (a,b,n}
funcavg (a,b,ni:

averase value of function
input:

a = lower hound

b = upper bound

n = npunber of intervals
output:
favg = average valus of function
linspaceia,b,n);
= feval{ 'func',x);
avg = meaniy);

L S -

oMM R
I

where fune is another function that is written to evaluate the cubic

function £ = funcix}
f = 0,12%%x."3 - 1. 125%x,."2d + 2.75%%x + 1;

The funcawvg function can be run from the command window as
== funcawvg{l,6,60)

arns =

2.5000

Now let's rewrite the M-file so that rather than being specific o fune, it evaluates a
generic function name £ that is passed in as an argument;

function fava = funcavalf,a,b,nl
% funcawvg average value of functicn
% funcawg {f,a.b,n):

% average value of function

% input:

% f = function to be evaluated
% a = lower bound

% b = upper bound

% n = number of intervals
% output:
% favg = average valus of function



| Chapra: Appliad Numerical | 3. Programming with Taxt 5 Tha MR-l

52

Methods with MATLAB for ~ MATLAB Campisnas, 2004
Engineers and Scientists
PROGRAMMING WITH MATLAB

X = linspaceia,b,.n);

v o= feval (f,x);

favg = meaniy);

This can be run from the command window as
== tuncavg! ' func',0,a,60)

ans =
25000

To demonstrate the generic nature of this version, we can use Tuncava 10 determing
the average value of the built-in sin function between 0 and 27 as

= funcawvg('sin®, 3, 2%pl, 180}

ang =
~-3.2530e-015%

Does this result make sense?
Finally, the real beauty of this approach is demonsirated by using the inline function
io pass the cubic

== funcavgliinline ('0.12%*x."2-1.125*x."2+2.75%*=x+1"1,0,6,60)

ang =
2.

[}

oo

Thus, we can see that funcavg can now evaluate any function using the inlins com-
mand. We will do this on numerous occasions throughout the remainder of this text.

3.6

MATLAB M-FILE: BUNGEE JUMPER VELOCITY

In this section, we will use MATLAB to solve the free-falling bungee jumper problem we
posed at the beginning of this chapter. This involves obtaining a solution of

dv T
— 1 ' _v_
dt 8 H
Recall that, given an initial condition for time and velocity, the problem involved iter-
atively solving the formula,
d vy
vy vy — AT
T
Now also remember that if we desired o attain good accuracy, we would employ small
steps, Therefore. we would probably want to apply the formula repeatedly to step out from
our initial time to attain the value at the final time. Consequently, an algorithm to solve the
problem would be based on a loop.
For example, suppose that we started the computation at 1 - 0 and wanted to predict
velocity at r - 12 s using a time step of Ar - (1.5 s. We would therefore need to apply the
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iterative equation 24 tmes—ihat is,
12
n- o—- 4
(.5
where - the number of iterations of the loop. Because this result is exact (i.c., the ratio is
aninteger), we can use a for loop as the basis for the algorithm. Here's an M-file 1o do this:

funcrtion vend = velocitylido, ti, tf, wi, m, odl

% velocityl{dt, ti, tf, wi, m, cd):

% zuler's method solution of freefalling bungee jumper
% uging a for loop

% oinpub:

% df = delta £ (s}

% Li = initial time i3]

% tf = final time {s}

% vwi = initial walue of dependent variable (m/s)
% m = mass kgl

% od = second-order drag coefficient {kgsm)

% cutput:

% vend = velocity at of im/s)

t o= bip

v o= Vig

Mo leE

<

For 1 = lve
dvdt = derivit, o m, o)y
REAE- TR SO o e OB ol

B e
and
vernd = vy

We must also set up a function to compute the derivative:

function dv = derivit, v, m, cd}
g = 9.81;
dv = g fod Som) * owtd;
This function can be invoked from the command window with the result:

== velocityl(0.5,0,12,0,68.1,0.25%)

ans =
50,9252

Note that the true value obtained from the analytical solution is 50.6175 (Exam-
ple 3.1). We can then try a much smaller value of &= to obtain a more accurate numerical
result:

== velooity{0.001,0,12,0,68.1,0.25)

alld =

50,6181
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Although this function is certainly simple o program, it is not foolproof, In partic-
ular, it will not work if the computation interval is not evenly divisible by the time step.
To cover such cases, a while . . . break loop can be substituted in place of the
shaded area;

function vend = velecciov2({do, ti, of, vi, m, odi

% ovelocity2(dy, Li, i, wi, m, <d):

S euler’s method solution of fresfalling bungee Jumper
% using a while loop

% input:

% dt = delta £t (s)

E ti = initial time (g}

3 tf = final time (g}

% wi = initial value of dependent variable (m/3)
% m o= mass kgl

% cd = second-order drag coefficient ikg/m)

3 output:

% vend = velooity at ©f (mrss)

£ = ti;

Vo= wij

= Pre

while {17

T O O S S A 1 v et ot O 7
Gyat = deris ey cdr s
sl e g e i

E=E ¥ h:

ifE sz bE Chreak, end
end
vand = v

As soon as we enter the while loop, we nse a single line 1€ structure to test whether
adding ¢ + 4t will take us beyond the end of the interval. If not {which would usually be
the case at first), we do nothing. Il so, we would shorten up the interval—that is, we set the
variable step b to the interval remaining: £ £ - . By doing this, we guarantee that the last
step falls exactly on ¢ £ After we implement this final step. the loop will terminate because
the condition + == £ £ will test true.

Notice that before entering the loop, we assign the value of the time step 4t o another
variable k. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code were inte-
grated within a larger program.

If we run this new version, the result will be the same as for the version based on the
for structure:

= veloocity2i0.5,0,12,0,68.1,0.25)

ans =
Lo.9250
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Further, we can use a dt that is not evenly divisible imo ot - i

== veloglow2 (0.35,0,12,0,68.1,0.25)

We should note that the algorithm is still not foolproof. For example, the user could
have mistakenly entered a step size greater than the calculation interval (e.g.. cf - ©i =
Sanddt = 20). Thus, you might want to include error traps in your code to catch such er-
rors and then allow the user to correct the mistake.

PROBLEMS

3.1 The sine function can be evaluated by the following
infinite series:
3

£

. x
Ay - v 3—1 ;

A

Create an M-file to implement this formula so that it com-
putes and displays the valoes of sin v as cach term in the
series is added. In other words, compute and display in
sequence the values for

siny - ¥

L 'r?'

SHEX - - T

. oot
Siyy - A }—1 5—|

up to the order term of your choosing. For cach of the pre-
ceding, compute and display the percent relative error as

true - Series approximation

true

Seerror - PO %

As o test case, employ the program o compute sin(1.53) for
up o and inchuding eight terms—ithat is. up to the term
215

3.2 An amount of money P is invested in an account where
interest is compounded at the end of the period. The future
worth F yielded at an interest rate i after it periods may be
determined from the following formula:

FooPe g
Write an M-file that will calculate the Tuture worth of an in-

vestment for each year from 1 through s, The input to the
function should include the initial investiment P, the interest

rate i (as a decimal), and the number of vears n for which the
future worth is to be calculated, The output should consist of
a table with headings and columns for n and F. Run the pro-
gram for £ SIO0000, ¢ - 008, andn - 8 years.

3.3 Economic formulas are available to compute annual
payments for loans, Suppose that you horrow an amount of
money P and agree o repay it in o aniual payments al an
interest rate of i, The formula to compate the annual pay-
ment A is

il iy

A.
- - 1

Write an M-file to compute A. Test it with P - 535,000 and
an interest rate of 7.6% (i - 0.076). Compute results for g -
1.2, 3, 4, and 5 and display the results as a table with head-
ings and columns for n and A.

3.4 The average daily temperature for an area can be ap-
proximated by the following function:

T T Tpeak Tonean) COS(0lt  fear )

where T, - the average annual temperature. 7, - the
peak temperature, @ - the frequency of the annual variation
(- 2m/365), and 1, - day of the peak temperature

(= 205 d). Parameters for some ULS. towns are listed here:

City * maan 1€} * poak [ "€)
Miomi, FL 22.1 283
Yo, AL 231 KN
Bismarck, MD 52 22.1
Seatle, Vi .G 176
Bogten, M, 1o.7 229

Develop an M-file that computes the average temperature
between two days of the year for a particular city. Test it for
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FIGURE P3.5

{a) January—Lebruary in Bismarck, ND (¢ - 0 o 39) and
(b1 July—Angust iemperature in Yuma, AZ {7 - 180 to 242).
3.5 Figure P35 shows a cylindrical tank with a conical
base. If the liquid level is quite low, in the conical part, the
volume is simply the conical volume of lquid. 1f the Biquid
level is midrange in the cylindrical part. the total volume of
liguid includes the filled conical part and the partially filled
cylindrical part,

Use decisional structures wo write an M-file to compute
the tank’s volume as a function of given values of R and .
Design the function so that it returns the volume for all cases
where the depth is less than 3R, Return an error message
(“Overtop™) if you overtop the tank—that is, d = 38, Test it
with the following data:

1 ! i 1
0.5 1.2 3.0 31

A6 Two distances are required to specify the location of a
point relative o an origin in two-dimensional space
(Fig. P3.6);

e The horizontal and vertical distances {x, v} in Cartesian
coordinates.
® The radius and angle (r, #} in polar coordinates,

It is relatively straightforward to compute Cartesian coordi-
nates (x, vy on the basis of polar coordinates {r, #). The
reverse process is not so simple. The radius can be computed
by the following formula:

Fooaixleoy

If the coordinates lie within the first and Tourth coordinates
(ie.x = 0. then a simple formula can be used 1o compute

v ()

1 v

FIGURE P3.6

The difficulty arises for the other cases. The following table
summarizes the possibilities

H
=0 =0 far eSx - m
=0 =0 tor hAx) o om
={ 0 T
-0 =0 aid
-0 =0 CmfE

0 0 0

Write a well-structuered M-file to calculate r and ¢ as a func-
tion of x and v. Express the final resulis for i in degrees. Test
vour program by evaluating the following cases:

o
i i
1 1
I 0
1 1
o o
1 0
Q i
Q [
0 0

3.7 Develop an M-file 1o determine polar coordinates as
described in Prob. 3.6. However, rather than designing the
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20 kips/ft
150 kip-ft .
| ] | 15 kips
[ |
s
T
1 5' zr 1 1' ] 2’ 1

FIGURE P3.10

function to evaluate a single case. pass vectors of x and v.
Have the function display the resulis as a table with columns
for x, v, r.and 8. Test the program for the cases outlined in
Prob. 3.6,

A8 Develop an M-lile lunction that is passed a numeric
grade from 0 to 100 and retums a letter grade according o
the scheme:

Letter Criteria
ﬂ. 0 numernic grads - 100
B B0 numerc grade = 90
C 70 numeric grode = 80
[ G0 numerc grade < A0

numanic grade < &0

3.9 Manning's equation can be used to compute the velocity
of water in a rectangular open channel;

T¢ BH AP
[ —
i (B- EH)

where [/ - velocity (mvs). 5+ channel slope, n - roughness
coefficient, 8 - width (m), and & - depth {m). The follow-
ing data is available for five channels:

0.035 L0008 10 2
0.020 G.O0G2 G 1
0015 CLOo0 20 1.5
0.030 00007 24 3
0.022 £.0003 15 2.5

Write an M-lile that computes the velocity for each of these
channels. Enter these values into a matrix where each col-
ummn represents a parameter and each row represents a chan-
nel. Have the M-file display the input data along with the
computed velocity in tabular form where velocity is the fifth
column. Include headings on the table to label the columns.
10 A simply supported beam is loaded as shown in
Fig. P3. 10, Using singularity functions, the displacement
along the beam can be expressed by the equation:

: 5
oo = 0t w5 B
- I5x- TE 5‘6—?;—3- 238.25x

By definition, the singularity function can be expressed as
follows:

" (x- a) when x> a

X
] whenx o

Develop an M-file that creates a plot of displacement versus
distance along the beam. x, Note that x - 0 at the left end of
the beam.

11 The volume Vof liguid in a hollow horizontal evlinder
ol radius rand length L is related o the depth of the liguid
fi by

V- |}2HK 1 (i) - - B 2rh - hz} L
r

Develop an M-file to create a plot of volume versus depth,
Test the program for v+ 2Zmand L+ 5 m.
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with the major sources of
errors involved in numerical methods. Specific objectives and topics covered are

*  Understanding the distinction between accuracy and precision.

*  Learning how to quantify error.

*  Learning how error estimates can be used to decide when to terminate an
iterative calculation.

*  Understanding how round-off errors occur because digital computers have a
limited ahility to represent numbers,

*  Recognizing that truncation errors occur when exact mathematical
formulations are represented by approximations.

*  Knowing how to use the Taylor series to estimate truncation errors.

*  Understanding how to write forward, backward, and centered finite ditference
approximations of first and second derivatives,

YOU'VE GOT A PROBLEM

n Chap. 1, vou developed a numerical model for the velocity of a bungee jumper. To
sofve the problem with a computer, you had (o approximate the derivative of velocity
with a divided difference:

dv  Av vl ) v
di A o

Thus, the resulting solution is not perfect—that is., it has error,
In addition, the computer you use to obtain the solution is also an imperfect tool. Be-
cause it is a digital device, the computer is limited in its ability to represent the magnitudes

and precision of numbers, Thus, the machine isell yvields results that contain error,
58
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4.1

So both vour mathematical approximation and your digital computer cause your re-
sulting model prediction 1o be uncertain, Your problem is; How do vou deal with such un-
certainty? This chapter introduces vou to some approaches and ideas that engineers and
scientists use (o deal with this dilemma.

ERRORS

Engincers and scientists constantly find themselves having (o accomplish objectives based
on uncerlain information. Although perfection is a laudable goal, it is rarely if ever a-
tained. For example, despite the fact that the model developed from Newion's second law
is an excellent approximation, it would never in practice exactly predict the jumper’s fall.
Aovariety of factors such as winds and slight variations in air resistance would result in de-
viations from the prediction. If these deviations are systematically high or low, then we
might need to develop a new model, However, if they are randomly distributed and tightly
grouped around the prediction. then the deviations might be considered negligible and the
maode] deemed adequate. Numerical approximations also introduce similar discrepancies
into the analysis,

This chapter covers basic topics refated 1o the identification, quantification, and mini-
mization of these errors. General information concerned with the quantification of error is
reviewed in this section. This is followed by Sections 4.2 and 4.3, dealing with the two
major forms of numerical error: round-off error (due 10 computer approximations) and
truncation error {due to mathematical approximations). Finally, we briefly discuss crrors
not directly connected with the numerical methods themselves, These include blunders,
maodel errors, and data uncertainty,

4.1.1 Accuracy and Precision

The errors associated with both caleulations and measurements can be characterized with
regard to their accuracy and precision. Acewracy refers (o how closely a computed or mea-
surcd value agrees with the tree value, Precision refers 1o how closely individual computed
or measured values agree with each other,

These concepis can be illustrated graphically using an analogy from targel practice,
The bullet holes on each target in Fig. 4.1 can be thought of as the predictions of a numer-
ical technique, whereas the bull’s-eye represents the tuth, fmacenracy (also called bias) is
defined as sysiematic deviation from the truth, Thus, although the shots in Fig. 4.1¢ are
mare tightly grouped than in Fig. 4.1a. the two cases are equally biased because they are
both cemered on the upper left quadrant of the target, fmprecision (also called wncertain),
on the other hand, refers to the magnitude of the scatter. Therelore, although Fig, 4.15 and
¢ are equally accurate (i.e., centered on the bull’s-eye), the latter is more precise beeause
the shots are tightly grouped.

Numerical methods should be sufficienily accurate or unbiased o meet the require-
ments of a particular problem. They also should be precise enough for adequate design,
In this book, we will use the collective term error 1o represent both the inaccuracy and
imprecision of our predictions,
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fnoreasing accuracy
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FIGURE 4.1
An excmpie from murksmunship illﬁsrrcring the concepts of CQCCUracy and [arecision:
[ | inaccurote and imprecise, | | occwrate and imprecise, { | inaccurcte and precise,

and [ ] accurate and pracise.

4.1.2 Error Definitions

Numerical errors arise from the use of approximations to represent exact mathematical op-
erations and guantities. For such errors. the relationship between the exact, or true, result
and the approximation can be formulated as

True value - approximation - error 4.1y

By rearranging Eqg. (4.1), we find that the numerical error is equal to the discrepancy
between the truth and the approximation, as in

E; - true value - approximation 4.2)

where E, is used to designate the exact value of the error. The subscript ¢ is included to des-
ignate that this is the “true” error. This is in contrast to other cases, as described shortly.
where an “approximate” estimate of the error must be employed.

A shortcoming of this definition is that it takes no account of the order of magnitude
of the value under examination. For example, an error of a centimeter is much more sig-
nificant if we are measuring a rivet than a bridge. One way to account for the magnitudes
of the quantities being evaluated is to normalize the error to the tue value, as in

true value - approximation

True fractional relative error -
true value
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The relative error can also be multiplied by 1004 (o express it as

true value - approximation

100% (4.3}
true value

£

where £y designates the troe percent relative error,

For example suppose that you have the task of measuring the lengths of a bridge and a
rivel and come up with 9999 and 9 cm, respectively. IF the true values are 10,000 and
10 cm, respectively, the error in both cases is | cm. However, their percent relative errors
can be computed using Eq. (4.3) as 0.01% and 10%, respectively, Thus, although both mea-
surements have an absolute error of | em, the relative error for the rivet is much greater, We
would probably conclude that we have done an adequate job of measuring the bridge,
whereas our estimate For the rivet leaves something to be desired.

Notice that for Egs. (4.2) and (4.3). £ and £ are subscripted with a r 1o signify that the
error 18 based on the true value, For the example of the rivet and the bridge, we were pro-
vided with this value. However, in actual sitwations such information is rarcly available.
For numerical methods, the true value will only be known when we deal with functions that
can be solved analytically. Such will typically be the case when we investigate the theo-
retical behavior of a particular technigque for simple systems. However, in real-world ap-
plications, we will obviously not know the true answer a priori. For these situations, an
alternative is to normalize the error using the best available estimate of the true value—that
is, to the approximation itself, as in

approximate error

- - 0% (4.4}
approximation

S

where the subscript a signifies that the error 8 normalized to an approximate value. Note
also that for real-world applications, Eq. (4.2) cannot be wsed to caleulate the error term in
the numerator of Eq. (4.4). One of the challenges of numerical methods is o determine
error estimates in the absence of knowledge regarding the true value. For example, certain
numerical methods vse fteration to compute answers. [n such an approach, a present ap-
proximation is made on the basis of a previous approximation. This process is performed
repeatedly, or iteratively, to successively compute (hopefully) better and better approxima-
tions. For such cases, the error is often estimated as the difference between previows and
present approximations, Thus, percent relative error is determined according Lo

resent approximation - previous approximation
P PP I pp 100% 4.5)

“ present approximation
This and other approaches for expressing errors is elaborated on in subsequent chapters.
The signs of Egs. (4.2) through (4.5) may be either positive or negative. If the approx-
imation is greater than the true value (or the previous approximation is greater than the cur-
rent approximation), the error is negative: if the approximation is less than the true value,
the error is positive. Also. for Egs. (4.3) to (4.5), the denominator may be less than zero,
which can also lead to a negative error. Often, when performing computations. we may not
be concerned with the sign of the error but are interested in whether the percent absolute
value is lower than a prespecified percent tolerance £,. Therefore. it is often useful to em-
ploy the absolute value of Eq. (4.5). For such cases, the computation is repeated until

By < By (4.6)
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EXAMPLE 4.1

This relationship is referred to as a stopping criterion. If it is satisfied, our result is assumed
to be within the prespecified acceptable level £,. Note that for the remainder of this text, we
almost always employ absolute values when using relative errors,

It is also convenient to relate these errors to the number of significant figures in the ap-
proximation. It can be shown (Scarborongh, 1966} that if the following criterion is met, we
can be assured that the result is correct to ar feast n significant figures.

g, (05 10 "% 4.7

Error Estimates for Iterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite series,
For example, the exponential tunction can be computed using

2 .r3 xf _
23 n! (F4.L.L)

el x-

Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of ¢'. Equation (E4.1.1) is called a Maclaurin series expansion.

Starting with the simplest version, ¢ - 1, add terms one at a time in order to estimate
. Atter each new term is added, compute the true and approximate percent relative errors
with Egs. (4.3) and (4.5). respectively, Note that the true valug is ™ - 1.648721 ..., Add
terms until the absolute value of the approximate error estimate £, falls below a prespeci-
fied error criterion £, conforming to three significant figures,

eﬁl.ﬁ

Solution.  First, Eq. (4.7) can be employed to determine the error criterion that ensures a
result that is correct to at least three signiticant figures:

g (05 10F Y% 0.05%

Thus, we will add terms to the series until £, falls below this level.
The first estimate is simply equal to Eq. (E4.1.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term as in
et ox
or forx - 0.5
e 1o 05 LS

This represents a true percent relative error of [Eq. (4.3)]

1648721 1.5
o222 2 000 9.02%
& ‘ 1.648721 ‘

Equation (4.5) can be used to determine an approximate estimate of the error, as in

1.5- 1

gy

‘ 100% - 33.3%
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Because £, is not less than the required value of £, we would continue the computation by
adding another term, x* /2!, and repeating the error calculations. The process is continued
until £, = £,. The entire computation can be summarized as

Terms Result % Y
1 1 39.3
2 1.5 20z 333
3 1.625 1.44 Pl
4 1.6458333313 0175 1.27
3 1.648437500 0017z 0158
& 1648697917 0007142 00158

Thus, after six terms are included, the approximate error falls below &; - 0.05%, and the
computation 1s terminated. Howewver. notice that, rather than three sigmficant figures. the
result i1s accurate to five! This is because, for this case, both Eqs. (4.5) and (4.7) are con-
servative. That is, they ensure that the result 1s at least as good as they specify. Although,
this 15 not always the case for Eq. (4.5), it is true most of the time.

4.2

ROUND-OFF ERRORS

Reund-off ervors arise becanse digital computers cannol represent some guantities exactly,
They arc important to engineering and scientific problem solving becanse they can lead o
erroneous results, In certain cases, they can actually lead 1o a calculation going unstable
and yielding obviously erroncous resulis, Worse still, they can lead (o subtler discrepancies
that are difficult to detect.

There are two major facets of round-off errors involved in numerical calculations:

1. Digital computers have size and precision limits on their ability (o represent numbers,

2. Certain numerical manipulations are highly sensitive to round-off errors. This can result
from both mathematical considerations as well as from the way in which computers per-
form arithmetic operations,

4.2.1 Computer Number Representation

Numerical round-off errors are directly related to the manner in which numbers are stored
in a computer. The fundamental unit whereby information is represented is cafled a word,
This is an entity that consists of a string of binary digits, or bits, Numbers are typically
stored in one or more words, To understand how this is accomplished, we must first review
some material related 1o number systems,

A number svstem is merely a convention for representing quantities, Because we have
10 fingers and 10 toes, the number system that we are most familiar with is the decimal, or
bage-10, number system, A base is the number used as the reference for constructing the
system, The base-10 system uses the 10 digits—0,1,2,3,4, 5.6, 7, &, and 9—1o represent
numbers, By themselves, these digits are satisfactory for counting from 010 9,
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For larger quantities, combinations of these basic digits are used, with the position or
place value specifying the magnitede, The righimost digit in a whole number represents a
number from O to 9, The second digit from the right represents a multiple of 10, The third
digit from the right represents a multiple of 100 and so on. For example, if we have the
number 8642.9, then we have eight groups of 1000, six groups of 100, four groups of 140,
two groups of 1, and nine groups of (L1, or

(8- 10N (6 109 (4 10Y 2 M @ 10 86429

This type of representation is called positional notation,

Now, because the decimal system is so familiar, 1t 15 not commaonly realized that there
are alternatives. For example, if human beings happened to have eight fingers and toes we
would undoubtedly have developed an acial, or base-8, representation. In the same sense,
our friend the computer is like a two-fingered animal who is limited to two states—either
(h or 1. This relates to the fact that the primary logic units of digital computers are on/off
electronic components. Hence, numbers on the computer are represented with a binary, or
hase-2, system, Just as with the decimal system, guantities can be represented using
positional notation. For example. the binary number 101.1 is equivalent to (1 2%)-
- 2% (1 2% (- 2N 4. 0 1. 05 5.5 in the decimal system.

The fact that digital computers use a finite number of Binary digits (or birs) to repre-
sent numbers has two major implications:

Precision.  Some numbers cannot be represented exactly. For example, irrational numbers
suchasr, ¢, or 7T canmot be expressed by a finite number of significant figures, Therefore,
they cannot be represented exactly by the computer. In addition, because computers use a
binary, or base-2, representation they cannot precisely represent certain exact base- [ num-
bers. For example, the exact base-10 guantity 0.1 cannot be represented exactly in a base-2
syslem.

In general, for computer tools that use 16-bit word size, fractional numbers, called
foating point numbers in computing jargon, can be expressed o about seven base-10 dig-
its of precision. Thus, 7 can be expressed as 3141593, For tools using 32-bit words, the
precision increases to about 15 base-10 digits. Thus, 7 would be expressed as
3.14159265358979. Note that 32-bit precision is standard in MATLAB. This is sometimes
called deowble precision.

Range. There are finite ranges of values that the computer can represent. For computer
tools that use 16-hit word size, the range of integers is typically from - 32,768 to 32,767,
For those using 32-bit word size, these increase to - 2,147 483,648 to 2,147 483.647. For
floating-point numbers, the ranges are 10 ™ to 10™ and 100 ** to 10™ for 16-bit and 32-bit
word size, respectively.

MATLAB has a number of buili-in functions related to its internal number representa-
tion. For example, the realmax function displays the largest positive real number:

== format long
== Yedalinasx

ans

=l
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Numbers occurring in computations that exceed this value create an overflow and generally
cause the calculation to terminate and an error message to be displaved.
The realmin function displays the smallest positive real number:

== realmin

ans =
2L 2E5073E5850720e-20H

Numbers that are smaller than this value create an underflow and are generally set to zero.
The eps function displays the smallest number that can be added to one that produces
a number larger than one:

= EpE

oty
@ils =

2,220440048250313e-016

This value, which is sometimes referred to as the machine epsilon, represents the finest
level of resolution that is possible for floating-point arithmetic. Thus, we can see that the
value of =ps supports our previous contention that tools such as MATLAB that use 32-bit
word lengths can only represent about 15 base- 10 digits.

4.2.2 Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in round-off error. To understand how this
occurs, fet’s look at how the computer performs simple addition and subtraction.

Because of their familiarity. normalized base-10 numbers will be employed to illus-
trate the effect of round-off errors on simple addition and subtraction. Other number bases
would behave in a similar fashion. To simplify the discussion. we will employ a hypothet-
ical decimal computer with a 4-digit mantissa and a 1-digit exponent.

When two floating-point numbers are added. the numbers are first expressed so that
they have the same exponents. For example, if we want to add 1.557 - (0.04341. the com-
puter would express the numbers as 0.1557 - 101 0.004341 - 10, Then the mantissas
are added to give 0.160041 - 10", Now, hecause this hypothetical computer only carries
a four-digit mantissa. the excess number of digits get chopped off and the result is
0.1600 - 10'. Notice how the last two digits of the second number (41) that were shifted
to the right have essentially been lost from the computation.

Subtraction is performed identically to addition except that the sign of the subtrahend
is reversed, For example, suppose thar we are subtracting 26.86 from 36.41. That is.

0.3641 - 107
- 02686 - 107

0.0955 - 10°

For this case the result must be normalized because the leading zero is unnecessary. So
we must shift the decimal one place to the right to give 0.9550 - 10' - 9.550. Notice that
the zero added to the end of the mantissa is not significant but is merely appended to fill the
empty space created by the shift. Even more dramatic results would be obtained when the
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numbers are very close as in

0.7642 - 107
- 0.7641 - 107

0.0001 - 107

which would be converted to 0.1000 - 10" - 0.1000. Thus, for this case, three nonsignifi-
cant zeros are appended.

The subtracting of two nearlv equal numbers iz called subrractive cancellation. It is
the classic example of how the manner in which computers handle mathematics can lead to
numerical problems. Other calculations that can cause problems include:

large Computations. Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their Tinal results. In addition, these computations are often inter-
dependent. That is, the later caleulations are dependent on the results of earlier ones. Con-
sequently, even though an individual round-off error could be small, the cumulative effect
over the course of a large computation can be significant. A very simple case involves sum-
ming a round base-10 number that is not round in base-2. Suppose that the following M-file
is constructed:

function sout = sumdemo|)
g = 0
for i = 1:10000
8 = 8 + 0.000L;
end
S0Ut = 5;

When this function is executed, the result is

==» format long
== Eumdenc

ans =

0.95900000032290]

The format long command lets us see the 15 significant-digit represemtation vsed by
MATLAB. You would expect that sum would be equal 1o 1. However, although 0.0001 is a
nice round number in base-10, it cannot be expressed exactly in base-2. Thus, the sum
comes out 1o be slightly different than 1. We should note that MATLAB has features that
are designed to minimize such errors. For example, suppose that you form a vector as in

== format long
= E o= [D1D.GGC‘1:1].‘

For this case, rather than being equal to (.99999999999901, the last entry will be exactly
one as verified by

== s {10001)
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4.3

Adding a Large and a Small Number.  Suppose we add a small number, 0.0010, o a
large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 1-digit
cxponent. After modifying the smaller number so that its exponent matches the larger,

0.4000 - 10*
0.0000001 - 10*
0.4000001 - 10*

which is chopped t0 0.4000 - 10* . Thus, we might as well have not performed the addition!
This type of error can occur in the computation of an infinite series. The initial terms in
such series are often relatively large in comparison with the later terms. Thus, after a few
terms have been added. we are in the situation of adding a small quantity to a large quan-
tity. One way to mitigate this type of error is to sum the series in reverse order. In this way,
each new term will be of comparable magnitude to the accumulated sum.

Smearing.  Smearing oceurs whenever the individual terms in a summation are larger
than the summation itself, One case where this occurs is in series of mixed signs.

Inner Products.  As should be clear from the last sections, some infinite series are partic-
ularly prone to round-off error. Fortunately, the calculation of series is not one of the more
common operations in pumerical methods, A far more ubiquitous manipulation is the cal-
culation of inner products as in

i
E ¥ XM Xa¥ee oo el
i1

This operation is very common, particularly in the solution of simultaneous linear algebraic
cquations. Such summations are prone o round-off error. Consequently, itis often desirable
to compute such summations in double precision as is done amtomatically in MATLAB.

TRUNCATION ERRORS

Truncation errors are those that result from using an approximation in place of an exact
mathematical procedure. For example, in Chap. | we approximated the derivative of veloc-
ity of a bungee jumper by a finite-divided-difference equation of the form [Eq. (1.11)]
dv  Av o vl ) vl
dt iy oy

(4.8)

A truncation error was introduced into the numerical solution because the difference equa-
tion only approximates the true value of the derivative (recall Fig. 1.3). To gain insight into
the properties of such errors, we now turn to a mathematical formulation that is used widely
in numerical methods to express functions in an approximate fashion—the Taylor series.

4.3.1 The Taylor Series

Taylor’s theorem and its associated formula, the Taylor series, is of great value in the study
of numerical methods. In essence, the Tavlor theorem states that any smooth function can
be approximated as a polynomial. The Tavlor series then provides a means (o express this
idea mathematically in a form that can be used to come up with praciical results.
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The approximation of flx)- - 0.0 0157 058 025x- 120lx- | by
zerooider, fistorder, and second-arder Taylar series expansions.

A useful way 1o gain insight into the Taylor series is to build it term by term. A good
problem context for this exercise is o predict a function value at one point in terms of the
function value and its derivatives at another point.

Suppose that you are blindfolded and taken to a location on the side of a hill facing
downslope (Fig. 4.2}, We'll call your horizontal location x, and your vertical distance with
respect 10 the base of the hill f{x). You are given the 1ask of predicting the height at a
position x; |, which is a distance / away from you.

Al first, vou are placed on a platform that is completely horizomtal so that you have no
idea that the hill is sloping down away from you, At this point, what would be your best
guess at the height at x;. 7 If you think about it (remember you have no idea whatsoever
what's in front of you), the best guess would be the same height as where you're standing
now! You could express this prediction mathematically as

Fila 0 flg)h (4.9

This relationship, which is called the zero-order approximarion, indicates that the value of
S at the new point is the same as the value at the old point. This resuli makes intuitive sense
because if x; and x;. | are close to each other, it is likely that the new value is probably sim-
ilar to the old value.

FEquation {4.9) provides a perfect esiimate if the function being approximated is, in
fact, a constant. For our problem, you would be right only if you happened to be standing
on a perfectly flar platean, However, if the function changes at all over the interval, addi-
tional terms of the Taylor series are required to provide a betier estimate.

S0 now you are allowed io get off the platform and stand on the hill surface with one
leg positioned in front of you and the other behind. You immediately sense that the front
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fool is lower than the back foot. In fact, vou're allowed to obtain a quantitative estimate of
the slope by measuring the difference in elevation and dividing it by the distance between
your Teet,

With this additional information, you're clearly in a better position o predict the
height at fix 1) In essence, you use the slope estimaie 1o project a straight line out o
X;. 1. You can express this prediction mathematically by

Flxe s filxy- fixoh (4.10)

This is called a first-order approximation because the addidonal first-order term consists of
a slope 7 (x;) multiplied by h, the distance between v and x; . Thus, the expression is
now in the form of a straight line that is capable of predicting an increase or decrease of the
function between x; and x;. .

Although Eq. (4.10) can predict a change, it is only exact for a siraight-line, or linear,
trend, To get a better prediction, we need to add more terms to our equation, S0 now you
are allowed to stand on the hill surface and wake two measurements, First, vou measure the
slope behind you by keeping one foot planted at x; and moving the other one back a dis-
tance Ax, Let’s call this stope £, (x;). Then vou measure the stope in front of you by keep-
ing one foot planted at x; and moving the other one forward Ax. Let’s call this slope
Je(x). You immediately recognize that the slope behind is milder than the one in front.
Clearly the drop in height is “accelerating”™ in front of you. Thus, the odds are that /(x;) is
even lower than your previous linear prediction,

As you might expect, vou're now going to add a second-order term 1o your egquation
and make it into a parabola, The Taylor series provides the correct way to do this as in
Sl

X i (4.11)

Flxe - flay flxph
To make use of this formula, you need an estimate of the second derivative. You can use the
last two slopes you determined to estimate it as

_ Felxd- folx)
Flo ) ——"— (4.12)
Ax
Thus, the second derivative is merely a derivative of a derivative; in this case, the rate of
change of the slope.

Before proceeding, lets look carefully m Eq. (4.11). Recognize that all the values
subscripted § represent values that you have estimated. That is, they are numbers, Conse-
quently, the only unknowns are the values at the prediction position x; . Consequently, it
is o gquadratic equation of the form

fihy: ash™ - arh - ay

Thus, we can see that the second-order Taylor series approximates the function with a second-
order pelynomial,
Clearly, we could keep adding more derivatives o capture more of the function’s cur-
vature, Thus, we arrive at the complete Taylor series expansion
() B (x “x)
o, MYy M,

Fle) - Pl f gk h

7 3 Y Ry (413
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Note that because Eq. (4.13) is an infiniie series, an equal sign replaces the approximaie
sign that was used in Eqgs. (4.9) through (4.11). A remainder term is also included 1o
account for all terms from n - 1 o infinity:

f ”t&ﬁh.,. ,

R, -
Yo 1

4.1

where the subseript o connotes that this is the remainder for the nth-order approximation
and £ is a value of x that lies somewhere between x; and x; .

Thus, we can now see why the Taylor theorem states that any smooth funclion can be
approximated as a polynomial and that the Taylor series provides a means 1o express this
idea mathematically.

In general, the mth-order Taylor series expansion will be exact for an nth-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yield an exact estimate. Each additional term wall
contribute some improvement, however slight, to the approximation. This behavior is
demonstrated in Example 4.2, Only if an infinite number of terms are added will the serics
yield an exact result.

Although the foregoing is true, the practical value of Tayvlor series expansions is that,
in most cases, the inclusion of only a few terms will resultin an approximation that is close
enough 1o the troe value for practical purposes, The assessment of how many terms are
required to get “close enough™ is based on the remainder term of the expansion (Eqg. 4.14).
This relationship has two major drawbacks. First, £ 15 not known exactly but merely lies
somewhere between x; and 1 . Second, to evaluate Eq. (4.14), we need to determine the
irr - 1yth derivative of f(x). To do this, we need to know f{x), However, il we knew
Fix), there would be no need 1o perform the Taylor series expansion in the present
context!

Despite this dilemma, Eq. (4.14) is still useful for gaining insight into truncation
errors, This is becavse we do have control over the term £ in the equation. In other words,
we can choose how far away from x we want to evaluate (v}, and we can control the num-
ber of terms we include in the expansion. Consequently, Eq. (4.14) is usually expressed as

R, O™ Y

where the nomenclature Q(h™ ') means that the truncation error is of the order of A" 1,
That is. the error is proportional to the siep size i raised o the (n - 1ith power, Although
this approximation implies nothing regarding the magnitude of the derivatives that muli-
ply ™ ', it is extremely useful in judging the comparative error of numerical methods
based on Tavior series expansions. For example, if the error is O(h), halving the step size
will halve the error. On the other hand, if the error is O(h%), halving the step size will quar-
ter the error,

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series, In many cases, if' b is sufficiently small, the firsi- and other
lower-order terms usually account for a disproportionately high percent of the error, Thus,
only a few terms are required to obtain an adequate approximation. This property is illus-
trated by the following example.
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EXAMPLE 4.2 Approximation of a Function with a Taylor Series Expansion

Problem Statement. Use Taylor series expansions with 7 - 0 to 6 to approximate
Jix)- cosxoat x. - /3 on the basis of the value of f{x) and its derivatives al
X - /4 Note that this means that i - 7 /3 o/fd- w/12

Solution.  Our knowledge of the true function means that we can determine the correct
value fim /3y - 0.5, The zero-order approximation is [Eq. (4.9)]

Ty T
I(q) Locos (z) - 0707106781

which represents a percent relative error of
0.5- 0707106781
0.5

For the first-order approximation, we add the first derivative term where f(x) - - sinx:

T g Ty T
1T—=1: © — | s — — 1. i 50
j(j) L05(4) sm(4)(lz) 0.5219866

which has -&- - 4.40%. For the second-order approximation, we add the second deriva-
tive term where f(x) - - cosa:

gy T SRV cos{m/dy /' m :
j(i)- ms(z)- S'"(I)(E)' T(E) - 0497754491

with -2, - 0.449%, Thus, the inclusion of additional terms results in an improved esti-
mate. The process can be continued and the resolis listed as in

£ 100% - 41.4%

Order - Sy B
0 CO5X DANA068 1 A4
| sin x QA2 1 DBLGST A.40
2 CO8X 0.ARF 754491 0.A44%
3 5N x DAPFHES 147 Ry
4 oS X O 0000551 L5l [
3 5N X 0500000304 a0 1070
& CO5X 0L ABPPCITEE 244 10"

Notice that the derivatives never go to zero as would be the case for a polynomial.
Therefore, each additional term results in some improvement in the estimate. However,
also notice how most of the improvement comes with the initial terms. For this case. by the
time we have added the third-order term, the error is reduced to 0.026%. which means that
we have attained 99.974% of the true value. Consequently, although the addition of more
terms will reduce the error further, the improvement becomes negligible.

4.3.2 Using the Taylor Series to Estimate Truncation Errors

Although the Taylor series will be extremely useful in estimating truncation errors through-
out this book. it may not be clear to vou how the expansion can actually be applied 1o
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numerieal methods, In fact, we have already done so in our example of the bungee jumper,
Recall that the objective of both Examples 1.1 and 1.2 was to predict velocity as a function
of time., That is, we were interested in determining vi(r). As specified by Eqg. (4.13), vii)
can be expanded in a Tavlor series:

vifi o win) - v - G- {’12{—:‘}(&- ot Ry (4.15)

MNow let us truncate the series after the first dervative term:
vl b wln) o vl n e R (4.16)
Equation {(4.16) can be solved for

viti 1) - vilt) Ry

v
o1k tioy &
i ]. i il i 4.17)
Firstorder Truswcution
approximstion orrar

The first part of Eq. (4.17) 1s exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11}]. However, because of the Taylor series approach,
we have now obtained an estimate of the truncation error associated with this approxima-
tion of the derivative. Using Egs. (4.14) and {4.17) yields

Ry vig)
_ . s 4.
P 3 {1 i) {4.18)
or
R’
‘ oW - 1) (4.19)
iy 4

Thus. the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.17)] has a trunca-
tion error of order . ;- ;. In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

4.3.3 Numerical Differentiation

Equation (4.17}) 15 given a formal label in numerical methods—it is called a finite differ-
ence. It can be represented generally as

..f‘l":-rl' I]" f{xr}_
X &

fixy- Olxy - x5 {4.200

or

Sl flxy
#

where h is called the step size—ithat is, the length of the interval over which the approxi-

mation 1s made, x;. 1 xy. 0s termed a “forward™ difference becavse it utilizes data at ¢
and i - 110 estimaie the derivative (Fig, 4.3q).

Tix)e aih) (4.21)
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This forward divided difference is but one of many that can be developed from the
Taylor series o approximate derivatives nomerically, For example, backward and centercd
difference approximations of the first derivative can be developed in a fashion similar 1o
the derivation of Eq. (4.17). The former wtilizes values at 2 and x; (Fig, 4.30), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig, 4.3¢), More accurate approximations of the first derivative can be devel-
oped by including higher-order terms of the Taylor series, Finally, all the foregoing ver-
sions can also be developed for second, thied, and higher derivatives, The following sec-
tions provide brief summaries illusirating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can be
expanded backward to calculate a previous value on the basis of a present value, as in

Fix)

2
3 h= - 4.22)

S e

Truncating this equation after the first derivative and rearranging yields

i) w (4.23)

where the error is O(h). See Fig. 4.35h for a graphical representation.

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.22) from the forward Tavlor series expansion:

Fixg)

TR (4.24)

filx vy flxgy fleh

to yield

f‘l}l{xi}

3
T

Flxe oy g 2700

which can be solved tor

Fl o) Sl 0 fﬂ](-xr'}hl_

.-fh{xf} i 0 f

or

Sl b flxe p _
2h

=

O (4.25)

Fixd-

Equation (4.25) is a centered finite difference representation of the first derivative.
Notice that the runcation error is of the order of A% in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor serics analysis yields
the practical information that the centered difference 1s a more accurate representation of
the derivative (Fig. 4.3¢). For example, if we halve the step size using a forward or back-
ward difference, we would approximately halve the truncation error, whereas for the cen-
tral difference, the error would be quartered.
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EXAMPLE 4.3  Finite-Divided-Difference Approximations of Derivatives

Problem Statement.  Use forward and backward difference approximations of O(h) and
a centered difference approsimation of O(h*) to estimate the first derivative of

Fixy - -0axt o 0S5t 050t 0258 1.2

atx - 0.5 using a step size b - (L5, Repeat the computation using & - (025, Note that the
derivative can be calculated directly as

Sy 0407 04507 LOx- 025
and can be used to compute the true value as f(0.5) - - 009125,
Solution.  Forh - 0.5, the function can be employed to determine
X1 0 fix e 1.2
X 0.3 Flyy e 0925
X LD fil - 0.2
These values can be used o compute the Torward divided difference [Eq. (4.173],

0.2 0925
Fi0s): ——— - - 145 £ 589G
(1.5
the backward divided difference [Eq. (4.23)],
0925 1.2
Fi0s8): ——— - - 055 g 39.7%
(1.5
and the centered divided difference [Eq. (4.25)],
02 1.2
s —- - 1.0 £ - 9.6%
L0
For i - 0,25,

X1 025 Fila - 110351563
X 035 fixgy - 0.925
X1 095 Fla ) - 063632813
which can be used to compute the forward divided difference,

0.63632813 - 0.925
0.25

F0.5) LI5S e 26.5%

the backward divided difference.
0.925 . 1.10351563
Fin.s): 035 - 0714 g - 21.7%
and the centered divided difference,
(.63632813 - 110351363

0.5

F10.5):

- 0.934 & 2.4%
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For both step sizes, the centered difference approximation is more accurate than for-
ward or backward differences, Also. as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward differences and quar-
ters the error of the centered difference,

4.4

Finite Difference Approximations of Higher Derivatives.  Besides first derivatives, the
Taylor series expansion can be used to derive numerical estimates of higher derivatives. To
do this, we write a forward Taylor series expansion for f(x;. 2} in terms of f{x):

FARET!
2!
Equation (4.24) can be multiplied by 2 and subtracted from Eq. (4.26) to give

flae 2y 2f (0 flay ok

which can be solved for

I':-rf- IE 2 I{vra' ) . E-rr"
£ o) Tix 2 J} a e Sl

|

This relationship is called the second forward finite difference. Similar manipulations can
be employed to derive a backward version
Sl 2t 00 flxa)

flxi - flxd - f Qg2 2h7- - {4.26)

0h) (4.27)

Fix W k)
and a centered version
e e i .
f |:,-‘-'.i} _ ||’ {'rl l:" ~f'[3‘.} _HA‘; I) ] GU!?}

h?

As was the case with the first-derivative approximations, the centered case is more accurate,
Naotice also that the centered version can be alternatively expressed as
Flg o flx) o fla) - fl o)
. . h i

Fitx) h
Thus, just as the second derivative is a derivative of a derivative. the second divided dif-
ference approximation is a difference of two first finite differences frecall Eq. (4.12)].

TOTAL NUMERICAL ERROR

The fesal numerical ¢rror is the summation of the truncation and round-off errors, In general.
the only way to minimize round-off errors is to increase the number of significant figures of
the computer, Further, we have noted that round-off ercor may dncrease due to subtractive
cancellation or due 1o an increase in the number of computations in an analysis, In contrast,
Example 4.3 demonstrated that the truncation error can be reduced by decreasing the step
size, Because a decrease in step size can lead to subtractive cancellation or 1o an increase in
computations, the truncation errors are decreased as the round-off errors are tnoreased.
Therefore, we are faced by the following dilemma; The strategy for decreasing one
component of the total error leads to an increase of the other component. In a computation,
we could conceivably decrease the step size o minimize fruncation errors only 1o discover
that in doing so, the round-off error begins 1o dominate the solution and the otal error
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returns

Log error
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A, gr{:phiﬁm dﬁ:picréun of the adeoft betwean round-olf and tuncation erar that sometimes
comes intfa play in the coorse of a numerical methad, The poirt of diminishing retuins is shown,
where round t_'.-F? GIOT bcgins fo nexgote the benehis of sieprsize reduchon,

grows! Thus, our remedy becomes our problem (Fig. 4.4). One challenge that we face is to
determine an appropriate step size for a particular computation. We would like to choose a
large step size to decrease the amount of calculations and round-off errors without incur-
ring the penalty of a large truncation error. If the total error is as shown in Fig. 4 4, the chal-
lenge is to identify the point of diminishing returns where round-off error begins to negate
the benetits of step-size reduction.

When using MATLAB. such situations are relatively uncommon because of its
15-digit precision. Nevertheless, they sometimes do occur and suggest a sort of “numerical
uncertainty principle” that places an absolute limit on the accuracy that may be obtained
using certain computerized numerical methods.

4.4.1 Control of Numerical Errors

Formost practical cases, we do not know the exact error associated with numerical methods,
The exception, of course, is when we know the exact solution, which makes our numerical
approximations unnecessary, Therefore, for most engineering and scientific applications we
must settle for some estimate of the error in our caleulations,

There are no systematic and general approaches to evaluating numerical errors for all
problems. In many cases error estimates are based on the experience and judgment of the
engineer or scientist,

Although error analysis is 1o a certain extent an art, there are several practical pro-
gramming guidelines we can suggest. First and foremost, avoid subtracting two nearly
equal numbers, Loss of significance almost always occurs when this is done. Sometimes
you can rearrange or reformulate the problem to avoid subtractive cancellation, If this is not
possible, you may wani (o use extended-precision arithmetic. Furthermore, when adding
and subtraciing numbers. it is besi to sort the numbers and work with the smallest numbers
first. This avoids loss of significance,



| Chapra: Appliad Numerical | 4. Round-0ff and Taxt 5 Tha MR-l
Mathods with MATLAB for  Truncation Errors Campaenas, 2004
Engineers and Scientists

78

ROUND-OFF AND TRUNCATION ERRORS

4.5

Bevond these compuational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool for analysis of such
errors, Prediction of wial numerical error is very complicated for even moderately sized
problems and tends 1o be pessimistic, Therefore, it is usually atempted for only small-scale
tasks,

The tendency is to push forward with the numerical computations and try 1o estimate
the accuracy of your resulis, This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it may be possible (o substitute the results back
into the original equation 1o check that it is actually satisfied.

Finally vou should be prepared to perform numerical experiments (o increase your
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and
comparing the resulis. We may employ sensitivity analysis 10 see how our solution changes
when we change model parameters or input values, We may want to try different numeri-
cal algorithms that have different theoretical foundations, are based on different compuia-
tional strategies, or have different convergence properties and stability characieristics,

When the results of numerical computations are extremely critical and may involve
loss of human life or have severe cconomic ramifications, it is appropriate to take special
precautions, This may involve the use of two or more independent groups 1o solve the same
problem so that their results can be compared.

The roles of errors will be a topic of concern and analysis in all sections of this book.
We will leave these investigations 1o specific sections,

BLUNDERS, MODEL ERRORS, AND DATA UNCERTAINTY

Although the following sources of error are not directly connected with most of the nu-
merical methods in this book, they can sometimes have great impact on the success of a
maodehing effort. Thus, they must always be kept in mind when applying numerical tech-
nigues in the context of real-world problems.

4.5.1 Blunders

We are all familiar with gross errors, or blunders, In the carly vears of computers, errongous
numerical results could sometimes be atiributed to malfunctions of the computer itself,
Today, this source of error is highly unlikely, and most blunders must be attributed 1o human
imperfeciion.

Blunders can occur at any stage of the mathematical modeling process and can con-
tribute o all the other components of error. They can be avoided only by sound knowledge
of fundamental principles and by the care with which vou approach and design your solu-
tion 1o a problem,

Blunders are usually disregarded in discussions of numerical methods, This is no doub
due to the Tact that, try as we may, misiakes are to a certain extent unavoidable. However, we
believe that there are a number of ways in which their occurrence can be minimized. In par-
ticular, the good programming habits that were outlined in Chap. 3 are extremely useful for
mitigating programming blunders, In addition, there are usually simple ways to check
whether a particular numerical method is working properly. Throughout this book, we dis-
cuss ways 1o check the resulis of numerical calculations.
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4.5.2 Model Errors

Muodel errors relate to bias that can be ascribed to incomplete mathematical models. An ex-
ample of a negligible model error is the fact that Newton's second law does not account for
relativistic effects. This does not detract from the adequacy of the solution in Example 1.1
because these errors are minimal on the time and space scales associated with the bungee
Jumper problem.

However. suppose that air resistance is not proportional to the square of the fall velocity,
as in Eq. (1.7}, but is related to velocity and other factors in a different way. If such were
the case, both the analytical and numerical solutions obtained in Chap. | would be erro-
neous because of model error. You should be cognizant of this type of error and realize that,
it you are working with a poorly conceived model, no numerical method will provide
adequate results.

4.5.3 Data Uncertainty

Errors sometimes enter into an analysis because of uncertainty in the physical data on
which a model is based. For instance, suppose we wanted to test the bungee jumper model
by having an individual make repeated jumps and then measuring his or her velocity afier
a specified dme interval, Uncertainty would undoubtedly be associated with these mea-
surements, as the parachutist would fall faster during some jumps than during others. These
errors can exhibit both inaccuracy and imprecision, IT our instruments consistently under-
estimate or overestimate the velocity, we are dealing with an inaccurate, or biased, device.
On the other hand, if the measurements are randomly high and low, we are dealing with a
question of precision.

Measurement errors can be quantified by summarizing the data with one or more well-
chosen siatistics that convey as much information as possible regarding specific characteris-
tics of the data. These descriptive statistics are most often selected 1o represent (1) the loca-
tion of the center of the distribution of the data and (2) the degree of spread of the data. As
such, they provide a measure of the bias and imprecision, respectively, We will return to the
topic of characierizing data uncertainty when we discuss regression in Chaps, 12 and 13.

Although you must be cognizant of blunders, model errors, and uncertain data, the nu-
merical methods used for building models can be studied, for the most part, independently
of these errors, Therefore, for most of this book, we will assume that we have not made gross
errors, we have a sound model, and we are dealing with error-free measurements. Under
these conditions, we can study numerical errors without complicating factors,

PROBLEMS
4.1 The derivative of fix) - 1/(1- 3x%) is given by 4.2 {a} Evaluate the polynomial
by
(- 3xiy? vt Ixt By 035

Do you expect to have difficalties evaluating this function at
¥ 05777 Tey it wsing 3- and 4-digit arithmetic with  atx - 1.37. Use 3-digit arithmetic with chopping. Evaluate

chopping.

the percent relative error.
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ib) Repeat (a) but express v as

¥l T Blxe 035

Ewvaluate the ercor and compare with part (a).
4.3 The following infinite series can be used to approximate

T

e

P x"

FIE Tl

{a) Prove that this Maclawrin series expansion is a special
case of the Taylor series expansion {Eg. 4.13) with
Yoo Oand h- x

{b) Use the Taylor series to estimate f{x)- ¢ at
xpop - ory; - 0.25 Employ the zero-, first-, second-.
and third-order versions and compute the £ for each
case.

4.4 The Maclaurin series expansion for cos x is

AR

X

oer 1 Foat xSt

cosY - . ? 4—! E' ﬁ-
Starting with the simplest version, cos v - [, add terms one
at o time (o estimate cosGr /40, After each new tern is added,
compute the rue and approximate percent relative errors.
Lse your pocket caleculator or MATLAB o determine the
true value. Add terms until the absolute value of the approx-
imate error estimate falls below an error criterion conform-
ing to two significant figures.
4.5 Perform the same computation as in Prob. 4.4, but use
the Maclaurin series expansion for the sin x

sing - v — — —

to estimate sin{m /4).

4.6 Use zero- through third-order Taylor series expansions

to predict fi2) for
Fiay - 257

using a base point at x - 1. Compute the true percent rela-

tive error & Tor each approximation.

4.7 Use zero- through fourth-order Taylor series expansions
to predict f{3) for fix)- Inxusing a base pointat v - L.

G- Tx- 88

Compute the true percent relative error £, for cach approxi-
mation. Discuss the meaning of the results,

4.8 Use forward and backward difference approximations
of () and a centered difference approximation of OUF) to
estimate the first derivative of the function examined in
Prob. 4.6. Evaluate the derivarive at v - 2 using a step size
of - 0.25. Compare your results with the true value of the
derivative. Interpret vour results on the basis of the remain-
der term of the Taylor series expansion,

4.9 Use a centered difference approximation of OUF) 1o
estimate the second derivative of the function examined in
Prob, 4.6, Perform the evaluation at v - 2 using step sizes of
Br- 0.2 and 0.1, Compare your estimates with the troe value
of the second derivartive. Interpret your results on the basis
of the remainder werm of the Taylor series expansion,

410 I xo = 1, it is known that

| S
- ’

Repear Prob. 4.4 for this series for x - 0.1,
411 To calealate a planet’s space coordinates, we have 1o
solve the function

fixy x- 1 D5siny

Let the base point be x; - & /2 on the interval [0, 7], Deter-
mine the highest-order Taylor series expansion resulting in a
maximum error of 0,015 on the specified interval. The error
15 equal to the absolute value of the difference between the
given function and the specific Taylor series expansion.
(Hint: Solve graphically.)

4.12 Consider the function fex)- x' 2y 4 on the
interval [+ 2, 2] with - 025, Use the forward, backward,
and centered finite difference approximations for the first and
second derivatives so as to graphically illustrate which ap-
proximation is most accurate. Graph all three firsi-derivative
finite difference approximations along with the theoretical,
and do the same for the second derivative as well.

4.13 Develop your own M-file o compure the machine
epsilon. Test it by comparing it to the result obtained with
the built-in function cps.
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CHAPTER OBJECTIVES

The primary objective of this chapter is to acguaint yvou with bracketing methods
for finding the root of a single nonlinear equation. Specific objectives and topics
covered are

*  Understanding what roots problems are and where they occur in engineering
and science.

Knowing how to determine a root graphically.

Understanding the incremental search method and its shortcomings.
Knowing how to solve a roots problem with the bisection method.

Knowing how to estimate the error of hisection and why it differs from error
estimates for other types of root location algorithms.

*  Understanding false position and how it differs from bisection.

YOU'VE GOT A PROBLEM

edical studies have established that a bungee jumper’s chances of sustaining a sig-
nificant vertebrae injury increase significantly if the free-fall velocity exceeds

36 m/s after 4 s of free fall. Your boss at the bungee-jumping company wants you
o determine the mass at which this criterion is exceeded given a drag coefficient of
0.25 kg/m.
You know from your previous studies that the following analytical selution can be
used o predict fall velocity as a function of time:

[em (;ng)

LR b tanh { /2
d

Try as you might, you cannot manipulate this equation to explicitly solve for m-—that is,
you cannot isolate the mass on the lefi side of the equation.

(5.1}

81
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3.1

An alternative way of looking at the problem involves subtracting vi1} from both sides
o give a new function:

finn) - ,@tanh ( .’I&!) oy (3.2
1,' o "l' i

Now we can see that the answer (o the problem is the value of m that makes the function
equal to zero, Henee, we call this a “roots™ problem, This chapter will introduce you to how
the compuier is used as a tool 1o obtain such solutions,

INTRODUCTION AND BACKGROUND

5.1.1 What Are Roots?

Years ago. you learned to use the quadratic formula

b b dac
e - (5.3)
2a
to solve
) oaxs bro - 0 (5.4)
!

The values calculated with Eq. {5.3) are called the “roots” of Eq. (5.4). They represent the
values of x that make Eq. (5.4) equal to zero. For this reason, roots are sometimes called the
zeros of the equation.

Although the quadratic formula is handy for solving Eq. {5.4). there are many other
functions for which the root cannot be determined so easily. Before the advent of digital
computers, there were a number of ways to solve for the roois of such equations. For some
cases, the roots could be obtained by direct methods, as with Eq. {5.3). Although there were
equations like this that could be solved directly, there were many more that could not. In
such instances, the only alternative is an approximate solution technique.

One method to obtain an approximate solution is to plot the function and determine
where it crosses the x axis. This point, which represents the v value for which f{x) . 0, is
the root. Although graphical methods are useful for obtaining rough estimates of roots, they
are limited because of their lack of precision. An alternative approach is to use frial and
error. This “technigue” consists of guessing a value of x and evaluating whether f{x) is
zero. If not (as is almost always the case), another cuess is made. and f(x) is again evalu-
ated to determine whether the new value provides a better estimate of the root. The process
is repeated until a guess results in an f{x) that is close to zero.

Such haphazard methods are obviously inefficient and inadequate for the requirements
of engineering practice. Numerical methods represent alternatives that are also approxi-
mate but employ systematic strategies to home in on the true root. As elaborated in the
following pages, the combination of these systematic methods and computers makes the
solution of most applied roots-of-equations problems a simple and efficient task.

5.1.2 Roots of Equations and Engineering Practice

Although they arise in other problem contexis, roots of equations frequently occur in the
arca of engineering design. Table 5.1 lists a number of fundamental principles that are rou-
tinely wsed in design work. As introduced in Chap. 1, mathematical equations or models
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TABLE 5.1 Fundamental principles used in engineering design problems.
Fundamental Dependent Independent
Principle Variable Variable Parameters
Heat balonce Temperolure Time and position Thermal properties of material, system geomeiny

Mass balance
Frice bolonce
Energy balance

Mewton's laws of

Ceoncantation or quantity
of mass

Magnitude and dirsciion
of forces

Changes in kinstic and
patential energy
Accelerotion, welacity,

Time and position
Time and position
Fime ard position

Time and position

Chemicol behavior of material, mass ransker,
sysiem geomelny

Strength of material, structural properties, system
geomefry

Thermol properies, moss of materiol, system
geomelry

Mass of moterial, system geometry, dissipative

maticn of loeation parameters
Kirchhotfs lows Currents and wvoltoges Time Eleciical properies [resislonce, copacioncs,
induciance|

derived from these principles are employed to predict dependent variables as a function of
independent variables, forcing functions, and parameters. Note that in each case, the de-
pendent variables reflect the state or performance of the system, whereas the parameters
represent ils properties or composition.

An example of such a model] is the equation for the bungee jumper’s velocity, If the pa-
rameters are known, Eg. (5.1) can be used to predict the jumper’s velocity. Such computa-
tions can be performed directly because v is expressed explicitfv as a function of the model
parameters, That is, it is isolated on one side of the equal sign.

However, as posed at the start of the chapter, suppose that we had to determine the
mass for a jumper with a given drag coefficient to attain a prescribed velocity in a set time
period. Although Eq. (5.1) provides a mathematical representation of the interrelationship
among the model variables and parameters. it cannot be solved explicitly for mass, In such
cases, m is said to be implicir,

This represents a real dilemma, because many engineering design problems involve
specifying the properties or composition of a system (as represented by its parameters) to
ensure that it performs in a desired manner {(as represented by its variables). Thus, these
problems often require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eg. (3.1) by
subtracting the dependent variable v from both sides of the equation to give Eq. (3.2). The
value of m that makes fim) - 0 is, therefore. the root of the equation. This value also rep-
resents the mass that solves the design problem,

The following pages deal with a variety of numerical and graphical methods for deter-
mining roots of relationships such as Eq. (3.2). These technigues can be applied to many
other problems confronted routinely in engineering and science.

5.2 GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f{x) - 0 is to make
a plot of the function and observe where it crosses the x axis. This point, which represents
the x value for which f(x) - 0, provides a rough approximation of the root.
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EXAMPLE 5.1

The Graphical Appreach

Problem Statement. Use the graphical approach to determine the mass of the bungee
jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/fs after 4 s of free
fall. Note: The acceleration of gravity is 9.81 m/s”,

Solution.  The following MATLAB session sets up a plot of Eg. (5.2) versus mass:

== od = 0.25; g = 9.81; v = 316; £ = 4;

== mp = linspace(50,200);

== Ip sart (gmp/od) . *tanh(sgre (ged. /mo) *t)-v;
== plot(mp, £fp) ., grid

: =
. ,/
.
.

/

50 100 150 200

The function crosses the m axis between 140 and 150 kg. Visual inspection of the plot
provides a rough estimate of the root of 145 kg (about 320 1b). The validity of the graphi-
cal estimate can be checked by substituting it into Eq. (5.2} to yield

== osgr igYlds/cdl *ranh{egre (grod/ 1450 Y0 ) -V

which is close to zero. It can also be checked by substituting it into Eq. (5.1) along with the
parameter values from this example to give

== agrilg¥lds/odl *tanh{sgro{g¥ca/ 145 %)

ans =
36 0456

which is close o the desired fall velocity of 36 m/s.

Graphical technigues are of limited practical value because they are not very precise,
However, graphical methods can be utilized to obtain rough estimates of roots. These
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5.3

eslimates can be employed as starting guesses for numerical methods discussed in this
chapier,

Aside from providing rough estimates of the root, graphical interpretations are useful
for understanding the properties of the functions and anticipating the pitfalls of the numer-
ical methods, For example, Fig. 3.1 shows a number of ways in which roots can occur {or
be absent) in an interval prescribed by a lower bound vy and an upper bound x,. Figure 5,16
depicts the case where a single root is bracketed by negative and positive values of f(x).
However, Fig, 5.1d, where f(x) and f(x,) are also on opposite sides of the x axis, shows
three roots occurring within the interval, In general, if f(x) and f(x, ) have opposite signs,
there are an odd number of roots in the interval, As indicated by Fig. 5.1 and ¢, i (5}
and f(x,) have the same sign, there are either no roots or an even number of roots between
the values,

Adthough these generalizations are usually true, there are cases where they do not hold,
For example, functions that are tangential to the x axis (Fig. 53.2a) and discontinuous func-
tions {Fig. 3.26) can violate these principles. An example of a funciion that s tangential o
the axis is the cubic equation fix) - (v- 2)x - 2ZWx - 4), Notice thatx - 2 makes two
terms in this polynomial equal to zero, Mathematically, x - 2 is called a mulriple roor,
Although they are bevond the scope of this book, there are special technigues that are
cxpressly designed 1o locate multiple roots (Chapra and Canale, 2002),

The existence of cases of the type depicted in Fig. 5.2 makes it difficult 1o develop
foolproof computer algorithms guaranieed 1o locate all the roots in an interval, However,
when used in conjunction with graphical approaches, the methods described in the follow-
ing sections are exiremely useful for solving many problems confronted routinely by engi-
neers, scientists, and applied mathematicians.

BRACKETING METHODS AND INITIAL GUESSES

It vou had a roots problem in the days before computing, you'd often be told to use “trial
and error” to come up with the root. That is. you'd repeatedly make guesses until the func-
tion was sufficiently close to zero. The process was greatly facilitated by the advent of soft-
ware tools such as spreadsheets. By allowing vou to make many guesses rapidly, such tools
can actually make the trial-and-error approach attractive tor some problems,

But, for many other problems, it is preferable to have methods that come up with the
correct answer automatically. Interestingly, as with trial and error, these approaches require
an initial “guess” to get started. Then they systematically home in on the root in an itera-
tive fashion,

The two major classes of methods available are distinguished by the type of initial
ouess, They are

* Bracketing methods. As the name implies, these are based on two initial guesses that
“hracket” the root—that is, are on either side of the root.

»  Open methods. These methods can involve one or more initial guesses, but there is no
need for them to bracket the root.

For well-posed problems, the bracketing methods always work but converge slowly
(i.c., they typically take more iterations to home in on the answer). In contrast, the open
methods do not always work (ie., they can diverge), but when they do they usually con-
verge quicker,
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FIGURE 5.1 FIGURE 5.2
llustration of o number of general ways thal o root may llustration of some exceptions o the general cases
ooour in an inferval prescr t;]/ a lower bound x, and depictad in Fig, 5.1, | | Muliple roots that accur when
an upper bound x,. Parts [ } and (- | indicate that ifborh the function is langential to the x axis, For this case,
fixyand fx,) hove the same sign, either there will be aliraugh the end poinis are of apposite signs, there ane
no rocts of there will be an even number of rocts within an ewen number of axis intercaptions Foor the inerval,
the interval. Ports |- Fand | ) indicate that if the furction [+ ) Discantinuaus funcions where end points of opposite
has diffzrent signs of the end ints, there will be on odd Sign bracket an even number of roats, 5p|;:n;;ic|[ strategies
number of roots in the inferval. are iequired for defermining e roots for these cases
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FIGURE 5.3

Cases where roois could be missed because the incremental length of the search procedure is
too large. Mote that the last oot on the right is multiple and would be missed regardless of the
increment langth.

In both cases. initial guesses are required. These may naturally arise from the physical
context you are analyzing. However, in other cases, good initial guesses may not be obvi-
ous. In such cases, automated approaches to obtain guesses would be useful. The following
section describes one such approach. the incremental search.

5.3.1 Incremental Search

When applying the graphical technique in Example 5.1, you observed that f(x) changed
sign on opposite sides of the root, In general, if £(x) is real and continuouws in the interval
from ;o x, and i) and £Ov,) have opposite signs, that is,

flxyfla) =0

then there is at least one real root between xp and x,.

Incremental search methods capitalize on this observation by locating an interval
where the function changes sign. A potential problem with an incremental search is the
choice of the increment length, If the Tength is oo small, the search can be very time con-
suming. On the other hand, if the length is too great, there is a possibility that closely
spaced roois might be missed (Fig. 5.3). The problem is compounded by the possible exis-
tence of multiple roots,

An M-file can be developed’ that implements an incremental search to locate the roots
of a function fune within the range from =min o xmax (Fig, 5.4). An optional argument
ne allows the vser o specify the number of intervals within the range, I ne is omiited. it
is automatically set o 300 A for loop is used (o step through each interval. In the event that
a sign change occurs, the upper and low bounds are stored in an array b,

U This function is & moditied version of an M-[ile originally presented by Recktenwald (20000,
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Function xb = incsearchifunc,xrin, xmax,ns}
% incsearchifunc, xmin, xmax. ns :
% finds brackets of x that contain sign changes of
% a fupction on an interval
% input:
£ func = name of functicn
%  amin, xmax = endpoints of interval
% n8 = loptional) number of subintervals alcng =
% need to search for brackets
% oubput:
%  xbik,1] s the lower bound of ihe kth sign change
% zhik,2] is the uppser boung cf the kih sign change
% If no brackets foond, «bh = [1;
if nargin = 4, ns = 50; end %if ng blank setr fo 50
% Incremental search
¥ = linspacei{xmin.xmax, nsl;
t = feval {func,x};
nh = 0; xb = []; %xb is mull unless sign change detected
for k = l:length(x)-1
if signifikl} -= signif{k+1)) %check for sign change
nh = obh & 1;
i s SRR T
S dhl il wi A Eett
enc
erd
if isempby {xb) fdisplay that no brackets were found
dispiinoe brackets found!)
shapt cheok anberoal o s ns
celae
disp! 'number of brackets:') %display number of brackets
dispinb!
end
FIGURE 5.4
An Melile 1o implement an incremental ssarch.
EXAMPLE 5.2  Incremental Search

Problem Statement.
interval [3, 6] for the function:

fixy

sin{ 1)

Lise the M-file inczearch (Fig. 5.4) to identify brackets within the

cosi3x)
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Solution.  The MATLAB session using the default number of intervals (50) is

== incsearchiinline{"sin(l10*xl+scos(3*x) "1, 3, 6)
number of possible roots:

5

ans =
32445 3.3061
3.30el 3.3873
3.7347 1.7495%
4.8531 4.7143
5.6327 5.6933

A plot of the function along with the root locations is shown here.,

2

R -

0
—1 \‘/
=2
3 3.5 4 4.5 B 5.5 3]

Although five sign changes are detected. because the subintervals are too wide, the func-
tion misses possible roots at ¥ - 4.25 and 5.2, These possible roots look like they might be
double roots. However, by using the zoom in tool, it is clear that each represents two real
roots that are very close together. The function can be run again with more subintervals

with the result that all nine sign changes are located
== inceEearchiinline{ 'sin{ll*x)scos (3*x) '}, 3,6, 100]

number of pozzible roots:

9

T.-\ -'JS -
3.2424 3.2927
3.3636 JL393E
3.7273 1.08%8
4.2121 4.2424
4.2424 4.,2727
4.6970 4.7273
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The foregoing example illustrates that brute-force methods such as incremental search
are not Toolproof. You would be wise to supplement such automatic technigues with any
other information that provides insight into the location of the roots. Such information can
be found by plotting the function and through understanding the physical problem from
which the equation originated.

5.4

EXAMPLE 5.3

BISECTION

The bivection method is a variation of the incremental scarch method in which the interval
is always divided in half, If a function changes sign over an interval, the function value at
the midpoint is evaluated. The location of the root is then determined as lying within the
subinterval where the sign change occurs. The subinterval then becomes the interval for the
next iteration, The process is repeated until the root is known to the required precision. A
graphical depiction of the method is provided in Fig. 5.5, The following example goes
through the actual computations involved in the method.

The Bisection Method

Problem Statement,  Use bisection (o solve the same problem approached graphically in
Example 5.1,

Solution.  The first step in bisection is to guess two values of the unknown (in the present
problem, s that give values for f(m) with different signs. From the graphical solution in
Example 5.1, we can sce that the function changes sign between values of 30 and 200. The
plot obviously suggests better inidal guesses, say 140 and 130, but for illusirative purposes
lei’s assume we don't have the benefit of the plot and have made conservative guesses,
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2 b
50 100 150
| | T
o T n
Root
2 b
_4 —
_5 1123
X e i
First iteration } l |
5 X i
Second iteration I 0 I
& * T
Third iteration —a——
e
Fourth iteration —a—

FIGURE 5.5
A graphical depiciion of the bisection mathod. This plat corrasponds 1o the fiest four iterations
from Example 5.3.

Therefore, the initial estimate of the root x, lies at the midpoint of the interval

S0 200
Xy T i25
Note that the exact value of the root is 142.7376. This means that the value of 125 calcu-
lated here has a true percent relative error of
‘ 1427376 - 125‘
P ittt

100% - 12.43%
142.7376

Next we compute the product of the function value at the lower bound and at the midpoint:
FO50)F(125) - - 4.579( 0.409) - 1871

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located in the upper interval between 125 and
2(0). Therefore, we create a new interval by redefining the lower bound as 1235,

At this point, the new interval exiends from x; - 125 tox, - 200, A revised root esti-
mate can then be calculated as

125 200

2
5 162.5

Xy -
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which represents a true percent error of -£- - 13.85%, The process can be repeated (o ob-
tain refined estimates. For example,

JO25 f(162.5) - - 0.4090.359) - - 0.147

Therefore, the root is now in the lower interval between 125 and 162.5, The upper bound
is redefined as 162.5, and the root estimate Tor the thard iteration is caleulated as

125- 1625
NS B

which represents a percent relative error of £, - 0.709%. The method can be repeated until
the result is accurate enough to satisly vour needs.

EXAMPLE 5.4

We ended Example 5.3 with the statement that the method could be continued 1o ob-
tain a refined estimate of the root. We must now develop an objective criterion for decid-
ing when 1o terminate the method.

Aninitial suggestion might be to end the caleulation when the error falls below some
prespecified level, For instance, in Example 5.3, the true relative error dropped from 12,43
10 0.709% during the course of the computation. We might decide that we should terminate
when the error drops below, say, 0.5%. This strategy is flawed because the error estimates
in the example were based on knowledge of the true root of the function, This would not be
the case in an actual sitwation because there would be no point in using the method if we al-
ready knew the root.

Therefore. we require an error estimate that is not contingent on foreknowledge of the
root. One way to do this is by estimating an approximale percent relative error as in [recall
Eq. (4.5)]

I:a.m-‘ B .I':.]Id
y oW
p

100% (5.5)

Byt -

where x™ is the root for the present iteration and 1™ is the root from the previous itera-
tion, When £, becomes less than a prespecified stopping criterion £, the computation is
lerminaied,

Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a
stopping criterion of &, - (.3%. Use Eqg. (5.3) to compute the errors.

Solution.  The results of the first two iterations for Example 5.3 were 125 and 162.5. Sub-
stituting these values into Eqg. (5.5) yields

1625 125‘

- 23.08%
TG 100% - 23.08%

Recall that the true percent relative error for the root estimate of 162.5 was 13.85%. There-
fore, -£,- is greater than -£,-, This behavior is manifested for the other iteratons:
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Iteration . e (%) & (%)

| S50 200 125 1243
2 125 200 1625 2308 1385
3 |25 1625 143,75 1304 071
4 1245 14375 134.375 S8 5 BA6
o] 134 370 14375 P39 Od2h K 2,58
) 1350625 143.75 141 4063 1.66 0.93
E 141 4063 143 75 1d2 5781 .82 (BN
B 142 57581 143.75 143, 1641 [aR (.30

Thus after eight iterations -g,- finally falls below g, - 0.5%, and the computation can be
terminated,

These results are summarized in Fig. 5.6. The “ragged”™ nature of the true error is due
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval,
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls a either end of the interval,

FIGURE 5.6

R - ;

Errars for the bisection method, True and approxmate enors are plotled versus the number
ol iteraticns.

100 —
Approximate error, |z |
s
&
s
=
=
z
g
1 e
&
True error, |«
1 ] ] ] | ] ]
. a 2 i (i} 8

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.6 suggests that -£,-, captures the general downward trend of £+, In addition, the plot
exhibits the extremely atractive characteristic that -=,- is always greater than -£,-. Thus,
when -, falls below £, the computation could be terminated with confidence that the root
is known to be at least as accurate as the prespecified acceptable level,

While it 1s dangerous 1o draw general conclusions from a single example, it can be
demonsirated that -£,- will always be greater than -£,- for bisection, This is due 1o the fact
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that cach time an approximate root is located using bisection asx, - (x- X, )1/2, we know
that the true root lies somewhere within an interval of Ax - x, - xy. Therefore, the root
must lie within - &x /2 of our estimate. For instance. when Example 5.4 was terminated,
we could make the definitive statement that

43.7500) - 2.57 :
xe- 1431641 14 'ﬂ[}2 1425781 143.1641 - 0.5859

In essence, Eg. (5.5) provides an upper bound on the true error. For this bound to be
exceeded, the true root would have o fall outside the bracketing interval, which by defini-
tion could never occur for hisection. Other root-locating technigues do not always behave
as nicely, Although bisection is generally slower than other methods, the neatness of its
error analysis is a positive feature that makes it attractive Tor certain engineering and sci-
entific applications.

Another benefit of the bisection method is that the number of iterations required to at-
Ltain an absolute error can be computed ¢ priori—that is, before starting the computation.
This can be seen by recognizing that before starting the technique, the absolute error is
Ay

2 2
where the superscript designates the iteration. Hence, before starting the method we are at
the “zero iteration,” Afier the first iteration, the error becomes

s Axt
o 4
Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations i is
E” ﬂ'tﬂ

i ETHR]

-t
tn’ '

If E, s is the desired error, this equation can be solved for?
log(Ax"/ E Ax?
] .'lr i af ) 1 |{ng
log2
Let's test the formula, For Example 5.4, the initial interval was Axg - 200 50 [50,
Adler eight iterations, the absolute error was

1437500 1425781
K, 50 3 ST81 0.5859

We can substitute these values into Eg. (5.6) o give
50,/0.585
N mgz(M). 8

B

(5.6)

il

Thus, if we knew beforehand that an error of less than 0.5839 was acceptable, the formula
tells us that eight iterations would vield the desired result,

Although we have emphasized the use of relative errors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) vou will be able to

* MATLAB provides the 1og2 function w evaluate the base-2 logarithm directly. If the pocket calcubator or
compuler langeage vou are using does not include the base-2 logarithm as an inirinsic lunction, this eguation
shows a handy way o compute i e general, log,dxd - logio)Togih).
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specify an absolute ervor, For these cases, biseetion along with Eqg. (5.6) can provide a use-

ful root location algorithm,

5.4.1 MATLAB M-file:

An M-file to implement bisection is displayed in Fig. 5.7. It is passed the function {£una)
along with lower (x1) and upper (xu) guesses. In addition an optional stopping criterion

FIGURE 5.7
An Mifile o implemant the bisection methad.

funetion rooct = bisection(func,xl,xu, es,.maxit)

t bisectioni{func,xl,.¥x1,e5, maxit}:

o

input:
fune = name of function
xl, #13 = lower and upper guesses

uses bhisection method to £ind the root of a function

maxit = (coticnal) maximum allowable iterations

LRl b i
roob = real rToot

itf funci{xi)*func(xu)=0 %if guesses do not bracke:t a sign
e e e e $change, display an error messags

retirn %and terminate
and
Tt if necessary, assign defauvlt values

if nargin<5, maxit = 50; end $if maxit bilank set to 50
if pergin<=4,; es5 = 0.001; end %1f es blank set to 0.001

% bisection

iter = [;
EEHEn S
while [13
T e
o=k wadmid
S s Bl na e
il it o e GIGE it e O e i ek 01 Bk

test = funcixil*funcixr):
if test < §

B
elzeif test = 0
®E =
else
ea = 0O;
and

if ea == 22 | ilter == maxit, break, end

&1l
root = XHr:

%
%
%
% ez - (optional] stopping criterion (%)
%
%
%

* 100; end
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5.5

{=2) and maximum iterations (maxit} can be entered. The function first checks whether
the initial guesses bracket a sign change. If not, an error message is displaved and the func-
tion is terminated. It also supplies default values if max it and 2= are not supplied. Then a
while . . . break loop is employed to implement the biscction algorithm until the
approximate error falls below ez or the iterations exceed mazxic,

FALSE POSITION

False position (also called the linear interpolation method) is another well-known bracket-
ing method. Tris very similar to bisection with the exception that it uses a different strategy
1o come up with its new root estimate, Rather than bisecting the interval, it locates the root
by joining f(x) and f(x,) with a straight line (Fig. 5.8), The intersection of this line with
the x axis represents an improved estimate of the root. Thus, the shape of the function in-
fluences the new root estimate. Using similar triangles, the interscction of the straight line
with the x axis can be estimated as (see Chapra and Canale, 2002, for details),

J'l{xu]{x.f S
r’ o 57
Tt Fixy - fixg) 67

This is the fulse-position formuola, The value of x, computed with Eq. (5.7) then re-
places whichever of the two initial guesses., x; or x,, vields a function value with the same
sign as f(x.). In this way the values of x; and v, always bracket the true root. The process
is repeated until the root is estimated adequately, The algorithm 1s identical to the one for
bisection (Fig, 5.7) with the exception that Eq. (5.7} is used.

FIGURE 5.8

False positian.
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EXAMPLE 5.5 The False-Position Method
Problem Stafement.  Use false position to solve the same problem approached graphi-
cally and with bisection in Examples 5.1 and 5.3,
Solution.  As in Example 5.3. initiate the computation with guesses of x; - 50 and
Xy - 200,
First iteration:
x50 Fiyy - - 4579387
Xy o 200 Flagy - 0.860291
0.860291(50 - 200)
- 200 - 1762773

e 00 - 4579387 - 0.860291 76.277
which has a true relative error of 23.5%.

Second iteration:

Fledfix,y - - 2592732
Therefore, the root lies in the first subinterval, and x, becomes the vpper limit for the next
iteration, x, - 1762773,

X 50 fixy - - 4579387

X, - 176.2773 Fla) - 0566174

0.566174(50 - 176.2773)
- 1762773 - 162382

r 76.27 - 4579387 0.566174 62.3828
which has true and approximate relative errors of 13.76% and 8.56%, respectively. Addi-
tional iterations can he performed to refine the estimates of the root.

Although false position often performs better than bisection, there are other cases
where it does not. As in the following example, there are certain cases where bisection
vields superior results.

EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position

Problem Statement.  Use bisection and false position to locate the root of
flay - x'
between x - O and 1.3

Solution.  Using bisection, the results can be summarized as

lteration : e (%) e (%)
| 0 1.3 065 100.0 35
. 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 11375 14.3 138
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 105625 |.015625 4.0 1.6
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Thus, afier five iterations, the true error is reduced 1o less than 2%. For false position, a
very different outcome is obtained:

Iteration - : : e (%) e (%)
1 0 1.3 0.09430 90.6
2 0.09430 1.3 018176 48.1 81.8
3 018174 1.3 0.26267 30.9 73.7
4 0.26287 1.3 0.33811 22.3 6.2
5 (.33511 1.3 0.40788 17.1 59.2

After five iterations, the true error has only been reduced to about 39%. Insizght into
these results can be gained by examining a plot of the function. As in Fig. 5.9. the curve vi-
olates the premise on which false position was based—that is, if f{x;) is much closer to
zero than f(x, ). then the root is closer to x; than to x,, (recall Fig. 5.8). Because of the shape
of the present function, the opposite is true.

FIGURE 5.9

Plotof fix)- x!9 1, illusrating slow convergence of the folse-position method.
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The forgoing example illusirates that blanket generalizations regarding root-location
methods are usually not possible. Although a method such as false position is often supe-
rior to bisection, there are invariably cases that vielate this general conclusion. Therefore,
in addition 1o using Eq. (5.5), the results should always be checked by substituting the root
estimate into the original equation and determining whether the result is close o zero.

The example also illustrates a major weakness of the false-position method: its one-
sidedness, That is, as iterations are proceeding, one of the bracketing points will tend 1o
stay fixed. This can lead w poor convergence, particularly for functions with significant
curvature, Possible remedies for this shortcoming are available elsewhere (Chapra and

Canale, 2002},

PROBLEMS

5.1 Use bisection to determine the drag coefficient needed
so that an 80-kg bungee jumper has a velocity of 36 my's after
4 5 of free fall. Note: The acceleration of gravity is 9.81 m/s®,
Start with initial guesses of - 0.1 and x, - 0.2 and iter-
ate until the approximate relative error falls below 2%,

5.2 Develop your own M-[ile for bisection in a similar fash-
ion to Fig. 5.7, However, rather than using the maximum
iterations and Eg. (3.5), employ Eq. (5.0} as your stopping
criterion, Make sure 1o round the result of Eq, (5.6) up 1o the
next highest integer. Test your function by solving Prob. 5.1
using £, ;- 0.0001,

5.3 Repeat Prob. 3.1, but use the false-position method w
obtain your solution,

5.4 Develop an M-file for the false-position method, Test it
by solving Prob, 5.1.

5.5 A beam is loaded as shown in Fig. P5.5. Use the bisec-
tion methad to solve for the position inside the beam where
there is no moment.,

5.6 {a) Determine the roots of fley- - 12 20
18x% - 2.75x" eraphically. In addition, determine the first
root of the function with {b) bisection and (c) false position,

FIGURE P5.5

100 b/t 100 o

For (b} and (¢} use initial guesses of vy - - 1 and v, - 0
and a stopping criterion of 1%,

5.7 Locate the first nontrivial oot of sin(x) - ¥ where xis
in radians. Use a graphical technique and bisection with the
initial interval from 0.5 to 1. Perform the computation antil
£, 15 less than £, - 2%,

5.8 Determine the positive real root of In{x®) - 0.7 (a)
graphically, (b} using three ierations of the bisection
method, with initial guesses of x; - .5 and x, - 2, and
{c) using three iterations of the false-position method, with
the same initial guesses as in (bh

5.9 The saturation concentration of dissolved oxyegen in
freshwater can be caleulated with the equation

1.575701 - 107

e - 13934411
T
6642308 107 1.243800- 10"
17 ' I
2621949 10!
jl';-l

where o, - the saturation concentration of dissolved oxy-
gen in freshwater at 1 atm (mg L "% and 7, - absolute
temperature {K). Remember that T, - T - 27315, where
T temperature (“C). According 1o this equation, saturation
decreases with increasing temperature, For typical narural
waters in temperate climales, the equation can be used to de-
termine that oxygen concentration ranges from 14,621 mg/L
at 0 °C o 6.949 mg/L at 35 °C. Given a valee of oxygen con-
centration, this formula and the bisection method can be
used 1o solve for temperature in °C.
(a) If the initial guesses are set as 0 and 35 °C, how many
bisection iterations would be required to determine tem-
perature 1o an absolute error of (.05 °C?
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{b) Based on (a), develop and test a bisection M-file func-
tion o determine T as a function of a given oxygen con-
centration, Test your function for o - 8, 10 and
14 mg/L. Check your results.

5.0 Water is flowing in a trapezoidal channel at a rate of

(- 20 m'fs. The eritical depth v for such a channel must

satisfy the equation

01 2
g4
where g+ 981 mvs’, A, - the cross-sectional area (m),

and B - the width of the channel at the swrface {m). For this

case, the width and the cross-sectional area can be related to
depth v by

B30y

and

et
[

A dve

|u|

Solve for the ertical depth using (a) the graphical method.
(b} hisection, and () false position. For (b} and {c) use ini-
tial guesses of & - 0.5 and x, - 2.5, and iterate until the
approximare error falls below 1% ar the number of iterations
exceeds 10, Discuss your results.
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acguaint vou with open methods for
finding the root of a single nonlinear equation. Specific objectives and topics
covered are

*  Recognizing the difference between bracketing and open methods for root
location.

*  Understanding the fixed-point iteration method and how vou can evaluate its
convergence characteristics.

*  Knowing how to solve a roots problem with the Newton-Raphson method and
appreciating the concept of quadratic convergence.
Knowing how to implement both the secant and the modified secant methods.
Knowing how to use MATLAB's £zerc function o estimate roots.
Learning how to manipulate and determine the roots of polynomials with
MATLAB.

by a lower and an upper bound. Repeated application of these methods always results

in closer estimates of the true value of the root. Such methods are said to be convergent
because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast. the open methods described in this chapter require only a single starting
value or two starting values that do not necessarily bracket the root. As such, they some-
times Jdiverge or move away from the true root as the computation progresses (Fig. 6,15}
However, when the open methods converge (Fig. 6.1¢) they usually do so much more
quickly than the bracketing methods. We will begin our discussion of open techniques with
a simple approach that is usefil for illustrating their general form and also for demonstrat-
ing the concept of convergence.

For the bracketing methods in Chap. 5, the root is located within an interval prescribed

101
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6.1

filxld Sk
| e
& £y 3
tak b}
& Ky Sl
=8 I
b T
E
X Xy
—
Ay Ay
FIGURE 6.1

Craphical depiction of te fundamental difference besween the | ) bracketing ard |- | and [ |
apen methads for oot focation, In {01, which is bisection, the roct is constrainad within the inter
val prescribed by ay and x,. In contrast, for the open method depicted in |- ] and |1, which i
Mlemdon Er;phson, a farmula is used o project fram X B0 Xy inoan ibedctiver faashicn, Thus the
method can either | ] dwt:rgc ar [ | comarga rupidiy. dcp{:nding on tha 5hr_}r_x; af the function
and the value of the initial guess.

SIMPLE FIXED-POINT ITERATION

As just mentioned, open methods employ a formula o predict the root. Such a formula can
be developed for simple fixed-poing iferation (01, as it is also called, one-point iteration or
successive substitution) by rearranging the function f(x) = 0 so that x is on the lefi-hand
side of the equation:

X = gi{x) 6.1

This ransformation can be accomplished either by algebraic manipulation or by simply
adding x wo both sides of the original equation.

The utility of Eq. (6.1} is that it provides a formula to predict a new value of x as a
function of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) can be
used to compute a new estimate x; 4 as expressed by the iterative formula

X = glay) i6.2)
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As with many other iterative formulas in this book, the approximate error for this cquation
can be determined using the error estimator:

e = |20 00g (6.3}
Kit1
EXAMPLE 6.1  Simple Fixed-Point lteration

Problem Statement.  Use simple fixed-point iteration to locate the root of f(x) = ¢ — x.

Solution.  The function can be separated directly and expressed in the form of Eq. (6.2)
as

Ny = e

Starting with an initial guess of xy = 0. this iterative equation can be applied to compuote:

S, % ., % e,
0 0.0000 100,000

1 1.0000 100.000 Fh.3ed 0.763
2 0.3679 171.828 35.135 0,460
3 06922 46,854 22050 O0.628
4 0.50035 368.30% 11.755 0533
5 06062 17.447 4,894 0.586
& 0.5454 11,157 1.835 0.556
7 05796 5503 2199 Q573
g 0.5601 3.481 1.239 0.564
9 05711 1931 0.705 0569
1o 0.564%9 1.10% 0.399 0,566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

Notice that the true percent relative error for each iteration of Example 6.1 is roughly
proportional (by a factor of about 0.5 to 0.6) to the error from the previouws iteration, This
property, called finear convergence, 1s characteristic of fixed-point iteration,

Aside from the “rate” of convergence, we must comment at this point about the “pos-
sibility” of convergence. The concepts of convergence and divergence can be depicted
graphically, Recall that in Section 5.2, we graphed a function to visvalize its structure and
behavior, Such an approach is employed in Fig, 6.2« for the function f(x) = ¢ —x. An
alternative graphical approach is to separate the equation into lwo component parts, as in

Siixy = falx)
Then the two equations

vy o= fily) (641
and

V2 = fa(x) (6.5)
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FIGURE 6.2

Twi alfernafive grophical metheds for determining the oot of Fix) = ¢ —x. | | Root at the
point where it crosses the x axis; [+ ) root af the intersection of the compenent funciions.

can be plotted separately (Fig. 6.2h). The x values corresponding to the intersections of
these functions represent the roots of f{x) = (L

The two-curve methed can now be used to illustrate the convergence and diverzence
of fixed-point iteration. First, Eq. {6.1) can be reexpressed as a pair of equations vy = x
and y; = gix). These two equations can then be plotted separately. As was the case with
Eqgs. (6.4) and {6.5). the roots of f(x) = {} correspond to the abscissa value at the intersec-
tion of the two curves. The function ¥y = x and four different shapes for y; = g(x) are
plotted in Fig. 6.3.

For the first case (Fig. 6.3a). the initial guess of xq is used to determine the corresponding
point on the v, curve [xq, gixg)). The point [x;, x,] is located by moving left horizontally to
the vy curve. These movements are equivalent to the first iteration of the fixed-point method:

Xy = g{xg)

Thus. in both the equation and in the plot, a starting value of x; is used to obiain an esti-
mate of xy. The next iteration consists of moving to [x;. g{x;}] and then to [x7. x2]. This
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Vi = ELE) \

{EEE Y2 = #lx)
| |
| |
| |
| |
| |
[ - -
XooX v X x
gl (i}
¥4 Y
¥ TR
.l.l 1
v, =¥
-
ty X X i
ic} i}

The solution in Fig. 6.3a is convergent because the estimates of v move closer to the
root with each iteration. The same 15 true tor Fig. 6.35. However, this 1s not the case for
Fig. 6.3¢ and o, where the iterations diverge from the root.

A theoretical dervation can be used to gamn msight into the process. As described 1n
Chapra and Canale (2002), it can be shown that the error for any iteration is linearly pro-
portional to the error from the previous iteration multiplied by the absolute value of the
slope of g:

Eip1 = gEE
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6a2

Consequently, if |2 = 1, the errors decrease with each iteration. For |g'| = 1 the errors
grow, Notice also that if the derivatve is positive, the errors will be positive, and hence the
errors will have the same sign (Fig. 6,34 and ). If the derivative is negative, the errors will
change sign on each iteration (Fig. 6.30 and o).

NEWTON-RAPHSON

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson method
{Fig. 6.4). If the initial guess at the root 1s v;, a tangent can be extended from the point
;. fix;1]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation. As in Fig. 6.4, the first derivative at x is equivalent to the slope:

: () —0
oy !
i L — Xis
which can be rearranged to yield

F{M}

= Ay e 6.6
AR AT (6.0

which is called the Newron-Raphson formula.

EXAMPLE 6.2 Newton-Raphson Method

Problem Statement.  Use the Newton-Raphson method to estimate the root of fx) =
¢ — x emploving an imitial goess of 1y = 0,
Solution.  The first derivative of the function can be evaluated as
fixy=—e " 1
which can be substituted along with the original function into Eq. (6.6) o give
ey
S e ——

Starting with an initial guess of xp = 0, this iterative equation can be applied 1o compute

. %
o 0 ]

1 0. 5300000000 11.8

i 0566311003 0147

3 0.5671431465 0.0000220
4 0567143290 < 10"

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
{compare with Example 6.1).
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Fiad
Slope = [y
L
Hr)—0
0 :
FIGURE 6.4 )
Graphical depiclion of the NewtonRaphson method. A tangent fo the function of x; [that is,
f(x)] ie extopolated down io the x axis o provide an esimate of the raot af x4,

As with other root-location methods. Eqg. (6.3) can be used as a termination criterion.
In addition, a theoretical analysis {(Chapra and Canale, 2002} provides insight regarding the
rate of convergence as expressed by

. _fH[-rr} .
Eojpg=——"F° (6.7
ST T :
Thus, the error should be roughly proportional to the square of the previous error. In other
words, the number of significant figures of accuracy approximately doubles with each
iteration. This behavior is called guadvaric convergence and is one of the major reasons for
the popularity of the method.

Although the Newton-Raphson method is often very efficient, there are situations
where it performs poorly. A special case—multiple roots—is discussed elsewhere {Chapra
and Canale. 2002). However, even when dealing with simple roots, difficulties can also
arise, as in the following example.

EXAMPLE 6.3 A Slowly Converging Function with Newton-Raphson

Problem Statement.  Determine the positive root of f(x) = ™ — | using the Newton-
Raphson method and an initial guess of x = (1.5,
Solution.  The Newton-Raphson formula for this case is
Xt =1
10x]

Xi+1 = X; —

which can be used o compuie
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;%

0 0.5
I Hhaad G032
2 46,485 FEA1E
3 41 8365 PR TR
4 3505280 PR TR
40 FODRIG 2.130
41 000024 0239
42 1 OLa0E

Thus, after the first poor prediction, the technigue is converging on the true root of 1, bt
ata very slow rate,

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the first guess is in a region where the slope is near
zere, Thus, the first iteration flings the solution far away from the initial guess o a new
vitlue (x = 51.65) where fix) has an extremely high value, The solution then plods along
for over 40 iterations untif converging on the root with adequate accuracy.

FIGURE 6.5

Gruphi{;r_ﬂ dr;:pir,‘ﬁon af the MNewdon-Rophson method for a case with slow COMETENCE, The
inset shows how o nearzero slope initially shoots the solution far from the root, Thereahier, the
slution vary slowhy comverges on he raof,

£k
E+ 17 161
12 -
B B2
1€+ 17
al
0.5 1
O |
Iu—i.-.-.m-:'f_...
! |
0
10 20

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection
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EXAMPLE 6.4

point {i.e., f'(x} = 0} occurs in the vicinity of a root. Notice that iterations beginning at xy
progressively diverge from the root. Fig. 6.66 illustrates the tendency of the Newton-Raphson
technique to oscillate around a local maximum or minimum. Such oscillations may persist, or,
as in Fig. 6.6h, a near-zero slope is reached whereupon the solution is sent far from the area of
interest. Figure 6.6c shows how an initial guess that is close to one root can jump to a location
several roots away. This tendency to move away from the area of interest is due to the fact that
near-zero slopes are encountered. Obviously, a zero slope [ f'(x) = 0] is a real disaster be-
cause it causes division by zero in the Newton-Raphson formula [Eq. (6.6)]. As in Fig. 6.6d,
it means that the solution shoots oft horzontally and never hits the v axis.

Thus, there is no general convergence criterion for Newton-Raphson. [ts convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently™ close to the root. And for some func-
tions, no guess will work! Good guesses are usually predicated on knowledge of the phys-
ical problem setting or on devices such as graphs that provide insight into the behavior of
the solution. It also suggests that good computer software should be designed to recognize
slow convergence or divergence.

6.2.1 MATLAB M-file: - - .- . ..

An algorithm for the Newton-Raphson method can be easily developed (Fig. 6.7). Note
that the program must have access to the function (func) and its first derivative (dfunc).
These can be simply accomplished by the inclusion of user-defined functions to compute
these quantities. Alternatively, as in the algorithm in Fig. 6.7, they can be passed to the
function as arguments,

After the M-file is entered and saved, it can be invoked to solve for root. For example,
for the simple function x* — 9, the root can be determined as in

> newtraphiinline('x"2-%*), inlina{"2%x'),5]
ans =
3
Mewton-Raphson Bungee Jumper Problem

Problem Statement.  Use the M-file function from Fig. 6.7 to determine the mass of the
bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 5 of
free fall. The acceleration of gravity is 9.81 m/s’,

Solution.  The function to be evaluated is

fimy = ‘j%[anh( f%r) — it} (E6.4.1)

To apply the Newton-Raphson method, the derivative of this function must be evalu-
ated with respect to the unknown, nr:

Ifim | ec, y Narrn
4y }=— ¥ tanh \/*E ) -2 rsech*(\/&r (E6.4.2)
dm 2V miey i 2 "

We should mention that although this derivative is not difficult to evaluaie in principle, it
involves a bit of concentration and effort to arrive at the final result.
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function roct = newtraphi{func.dfunc,.xr,es,maxit}

% newtraphifunc, dfunc, xguess, es, maxit]

% uaes MNewton-Raphson method bt find roct of a function
% impub:

% flne = fmame ob onction

% dfine = name of derivative of funcotion

4 xoeso = jnitial guess

B ez = lopticnal) stopping criterion (%}

% maxit = (optionall maximom allowakle iterations
% oukput:

% Yoot = real root

% 1f necessary, assign default wvalues
if naragin<h, maxit = 50;: end Bif maxik blank set to 50
if nargin<4, es = 0.001;: end %2if es bhilank set to . G301

% Newton-Raphsen
i S
while [1]
7 e G T
R S, S B B L S R

RS e

if xr ~= 0, ea = absi{{xy - xroldi/xxr) * 1006; end
if ma == es | iter == maxit, break, end
erg

roor = Xr:

FIGURE 6.7
An Mdile 1o implement the MewtonRaphsen method

The two formulas can now be used in conjunction with the function newtraph o
evaluate the root:

== oy = inline{sgro(9.81*m/0. 25 *anhisgre (9, 81*0, 25/ mh*41 -3, 'm" ) ;
=w oy = Inline{'l/2%sqri(% . BLS(m*0. 251 ) *tanh{ {2, 81*3 . 25/m)~(Lr/2)*4)
~H. 8L 02 m) *eechlsgre (9 810 20 my R4 2wt ) ;

»= newtraph{y,dy, 140, 0. 00001}

ans =
142 7376

6.3 SECANT METHODS

As in Example 6.4, a potential problem in implementing the Newton-Raphson method is
the evalvation of the derivative. Although this is not inconvenient for polynomials and
many other functions, there are certain functions whose derivatives may be difficult or
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EXAMPLE 6.5

inconvenient 1o evalvaie, For these cases, the derivative can be approximated by a back-
ward finite divided difference:

o Flxia) = flxg)

o)
7 Xi—1 — X

This approximation can be substituted into Eqg. (6.6) 0 vield the following iterative
equation:
S —x)

Ll =X — (0.8
x.l ' ,f{xl'—I}_Jr{vti} j

Equation (6.8} is the formula for the secant method. Notice that the approach requires two
initial estimates of x. However, because f(x} is not required to change signs between the
cstimates, it is not classified as a bracketing method.

Rather than using two arbitrary values to estimate the derivative, an alternative ap-
proach involves a fractional perturbation of the independent variable to estimate f{x),

Flw + 8 — filxg)

Fon = i

where § = a small perturbation [raction. This approximation can be substituted into
Eq. {6.06) to vicld the Tollowing iterative equation:
S,l‘;f{-!',]

Ny = i 6.9
e e T 8 — [l o

We call this the maodified secant method. As in the following example, 1t provides a nice
means w0 altain the efficiency of Newton-Raphson without having to compute derivatives,

Modified Secant Method

Problem Statement. Use the modified secant method to determine the mass of the
bungee jumper with a drag coefficient of 0.23 kg/m to have a velocity of 36 m/s after 4 s of
free fall. Note: The acceleration of gravity is 9.81 m/s®. Use an initial guess of 30 kg and a
value of 10" for the perturbation fraction,

solution.  Inserting the parameters into Eq. (6.9) yields
First iteration:
Xy = 50 Fixg) = —4.57938708
X+ By = 5000005 fxp + dap) = —4.579381 118
3 10 °(50)(—4.57938708)
—4. 579381118 — (—4.57938708)
= BE.39931(lg,| = 38.1%: |5, | = 43.4%)

J.'[=5-
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Second iteration:

1 = §8.3993] Flrgy = —1.69220771

X+ Axp = 88.39940 Sl +dxg) = —1.692203516

107°(88.39931)(— 1.69220771)
Xy = 88,30903] —
’ “1.692203516 — (—1.69220771)
= [24.08970( |, | = 13.19%; |g,| = 28.76%)
The calculation can be continued to vield
. A L, %

0 50.0000 64571

1 883991 JB.069 43438

2 1240857 13.0064 ZB.782

3 1405417 1.538 1706

4 142 7072 0.021 1.517

5 142,737 41 % 10 0021

o 142 7378 3.4 = 10 4.1 % 1070

The cheice of a proper value for 8 18 not automatic. If 8 is too small, the method can be
swamped by round-off error cavsed by subtractive cancellation in the denominator of
Eq. (6.9). If it is oo big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a umivariate function is merely an entity that returns
a single value in return for values sent o it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many hines of code that could take a sig-
nificant amount of exccution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable.

6.4 MATLAB FUNCTION: - . . - -

The methods we have described 1o this point are either reliable but slow (bracketing) or Fast
but possibly unreliable (open). The MATLAB fzero function provides the best qualities
of both, The £zero functon is designed to find the real oot of a single equation. A simple
representation of it syntax is

fzeroifunction, x0)
where funcrion is the name of the function being evaluated, and 7 is the initial guess.
Note that two guesses that bracket the root can be passed as a vector:

fzero! function, [x0 x131)

where x0 and 1 are guesses that bracket a sign change.
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Here is a simple MATLAB session that solves for the root of a simple quadratic: © — 9,
Clearly two roots exist at —3 and 3. To find the negative root:

=+ x = fzerofinline('wx"2-9'), -4}

- 'j
If we want to find the positive root, use a guess that is near it:

== ¥ o= fzeroiinlinse('x"2-2°%.4)

3

If we put in an initial guess of zero, it finds the negative root
== ¥ = frEerolinline('w"2-9',0)

X =

3
If we wanted to ensure that we found the positive root, we could enter two guesses as in
»» 2 = [zero{inline('x"Z-%9°),[0 4])

A
2

Also, if asign change does not occur between the two guesses, an error message is displayed
»» x = fzeroiinline{'x"2-9°}),[-4 471}

797 Error using == fzero
The function wvalues at the interval endpoints must differ in =zign.

The fzero function is a combination of the reliable bisection method with two faster
algorithms: the secant method and inverse quadratic interpolation. Inverse guadraiic infer-
polation is similar in spirit to the secant method. As in Fig. 6.8a, the secant method is based
on computing a straight line that goes through two guesses. The intersection of this straight
line with the v axis represents the new root estimate. The inverse quadratic interpolation
uses a similar strategy but is based on computing a quadratic equation (i.e., a parabola) that
goes through three points (Fig. 6.85).

The £zero function works as follows. If a single initial gness is passed, it first per-
forms a search to identify a sign change. This search differs from the incremental search
described in Section 5.3.1, in that the search starts at the single initial guess and then takes
increasingly bigger steps in both the positive and negative directions until a sign change is
detecied.

Thereafier, the fast methods (secant and inverse quadratic interpolation) are used un-
less an unacceptable result occurs {e.g.. the root estimate falls outside the bracket). If a bad
result happens, bisection is implemented until an acceptable root is obtained with one of
the fast methods. As might be expected, bisection typically dominates at first but as the root
is approached. the technique shifts to the faster methods,
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EXAMPLE 6.6

Sl Ao

=1
=

- - =

tal (&)

FIGURE 6.8 |
Comparison of [ | the secant method and - | inverse quadratic inlerpalation. Naote that the aor
proach in (- | is called "inverse” because the quadratic function is wiriten in v rother than in x.

A more complete representation of the fzero syntax can be written as
P Exl = [zero(function,xd, options, pl, p2, ...

where [, £x] = a vector containing the root x and the function evaluated at the root £,
aptions is a data structure created by the opt imsst function, and pl, pZ... are any
parameters that the function requires. Note that if you desire to pass in parameters but not
use the opt ions, pass an emply vector {1 in its place.

The ept imsst function has the syntax

options = optimset (‘par,',val,, 'Dar.",val., ...}

where the parameter oar, has the value val,. A complete listing of all the possible para-
meters can be obtained by merely entering optimset at the command prompt. The para-
meters that are commonly used with the £zerc function are

dizplay: When setto *itcer' displays a detailed record of all the iterations.
tolx: A positive scalar that sets a termination tolerance on .

The fzero and optimset Functions

Problem Statement. Recall that in Example 6.3, we found the positive root of f(x) =
&' — 1 using the Newton-Raphson method with an initial guess of (.5, Solve the same
problem with cptimses and fzero,

Solution.  An interactive MATLAB session can be implemented as follows:

W
]

s}

cobtions = opbimset {"displav:, 'iker');
[z,fx] = fzeroiinline('x"~10-1'), 0.5, options)

k73
W
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Fune-count b4 fixl Procedurs
1 0.5 -0, 288023 inicial
G.485858 -0 880287 sEarch
3 3.314142 -0.99870% aearch
4 0.48 -0.5200935]1 sEgroh
= 0.52 -0, 28554 search
& 0.471716 -0.999454 search
23 .952h48 -0, 385007 EEgrch
24 -0, 14 -1 Search
25 1.14 2.70722 segroh

Looking for a zero in the interwval [-0.14, 1.14]

26 . 205272 -1 interpolacion
27 0.672636 -0, 981042 bissction

28 3.206318 -0 626058 bisection

25 1.02316 O.257278 bisection

30 r.9r9128 -0, 103551 interpolation
31 .9988094 -0.0110061L7 interpolation
iz 1.00001  7.6B3852-003 interpolation
33 1 -3.83061le-007 interpoelation
34 1 -1.32452-011 interpolation
35 1 o interpolacion

Zero found in the interwal: [-0.14, 1.141.

Thus, after 25 iterations of searching, fzero finds a sign change. It then uses interpo-
lation and bisection until it gets close enough to the root so that interpolation takes over and
rapidly converges on the root.

Suppose that we would like to use a less stringent tolerance. We can use the opt Znset
function to set a low maximum tolerance and a less accurate estimate of the root resulis:

=» options = optimset ('tolx', le-3);
== [®,fx] = fzercolinline{'w"~10-1'),0.5, cptions)
% =
1,000%9
o=
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6.5 POLYNOMIALS
Polynomials are a special type of nonlinear algebraic equation of the general form
folx) = ax™ +ax™ T a0+ aux + dya (6,10}

where n 15 the order of the polynomial, and the «'s are constant coefficients, In many (but
not all} cases, the coefficients will be real. For such cases, the roots can be real and/or com-
plex. In general, an nth order polynomial will have # roots.

Polynomials have many applications in engineering and science. For example, they
are used extensively in curve fitting. However, one of their most interesting and power-
ful applications is in characterizing dynamic systems—and, in particular, linear systems,
Examples include reactors, mechanical devices, structures, and electrical circuits.

6.5.1 MATLAB Function: - - - - -

If you are dealing with a problem where you musi determine a single real root of a poly-
nomial, the technigues such as bisection and the Newton-Raphson method can have utility,
However, in many cases, engineers desire to determine all the roots, both real and complex,
Unfortunately, simple technigues like bisection and Newion-Raphson are not available for
determining all the roots of higher-order polynomials. However, MATLAB has an excel-
lent built-in capahility, the rocos function, for this task,

The rocte function has the syntax,

X o= Trootsioh

where x is a column vector containing the roots and ¢ is a row vector containing the poly-
nomial’s coefficients.

So how does the reosts function work? MATLAB is very good at finding the eigen-
values of a matrix. Consequently, the approach is to recast the root evaluation task as an
gigenvalue problem. Because we will be describing eigenvalue problems later in the book,
we will merely provide an overview here.

Suppose we have a polynomial

u|.r'r’ + ug.r"' + u_q_'c1L + u_;x: + sy + g =10 (6.0
Dividing by a; and rearranging yields

I i x s o
e S R B

A = v
iy oy oy (151 iy

(6.12)

A special matrix can be constructed by using the coefficients from the right-hand side as
the first row and with s and O's written for the other rows as shown:

—dafay  —dyfa)  —agfay  —asfoy —agfay
1 W] 0 0 0
] 1 0 0 0 (6.13)
] 0 1 4] 0
] 0 0 l 0

Eqguation (6.13) is called the polynomial’s companion matrix, It has the useful prop-
erty that its eigenvalues are the roots of the polynomial. Thus, the algorithm underlying
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EXAMPLE 6.7

the roots function consists of merely setting up the companion matrix and then using
MATLAB"s powerful eigenvaloe evaluation function 1o determine the roots, fis applica-
tion, along with some other related polynomial manipulation functions, are described in the
following example.

We should note that roots has an inverse function called oolvy, which when passed
the values of the roots, will retuwrn the polynomial’s coefficients. Its syniax is

o o= poly (]
where r is a column vector containing the roots and = is a row vector containing the poly-
nomial’s coefficients.

Using MATLAB to Manipulate Polynomials and Determine Their Roots

Problem Stotement,  Use the following equation to explore how MATLAB can he em-
ployed to manipulate polynomials:

folxd = x% =350 + 2750 + 2.125x% — 3.875x + 1.25 (E6.7.1)

Naote that this polynomial has three real roots: 0.5, — 1.0, and 2; and one pair of complex
roots; —1 £ 0.5,

Solution.  Polynomials are entered into MATLAB by storing the coefficients as a row
vector. For example, entering the following line stores the coefficients in the vector a:

=>a = {1 -3.5% 2,75 2,12% -3.875 1.25];

We can then proceed to manipulate the polynomial. For example we can evaluate it at
x = 1, by typing

== polyvalia,ll

with the result, 1(1)* — 3.5(10* + 2.75(1)* + 2.125(1)* — 3.875(1) + 1.25 = —0.25:

ang =
-0, 2500

We can create a quadratic polvnomial that has roots corresponding 1o two of the
original roots of Eg. (E6.7.13: 0.5 and —1. This quadratic is (x —035Mx + 1) =27 +
(0530 — 0.5, It can be enered into MATLAB as the vector 1

»» b = {1 .5% -.5]

E)

b =
1.0000 05000 -0, 5000

Note that the polv function can be used to perform the same task as in
a5 b o= poly{[0.5 -11)

b =
L.0000 0.5000 ~0.5000

We can divide this polvnomial into the original polynomial by

== [g,r] = deconvia, b
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with the result being a quotient (a third-order polynomial, o) and a remainder (=)
q =
1.0000 - P HH 52500 -2.5000
0 4] { {1 0 {1

Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

e W= I'{JUtS["—IJ

with the expected result that the remaining roots of the original polynomial Eq. (E6.7.1) are
found:

o =

2.0000

1.0000 + C.50001
1.0000 - ¢.30004

We can now multiply o by b to come up with the original polynomial:

=x oa = convig, bl
a =
1.0000 3,5000 2.7500 2.1230 3,.8750 1.2200

We can then determing all the roots of the original polynomial by
»m X = rootsia)l

. —
2.0000
-1.0000
1.0000 + 0.50004
1.0000 - 0.50004
0.5000

Finally, we can return to the original polynomial again by using the poly function:

=x a = poly{x)
1.0060 -R2.5000 ZU7R00 0 Z.1250 0 -3_8TS00 1.Z500
PROBLEMS
6.1 Employ fixed-point iteration to locate the root of 6.2 Use (a) fixed-point iteration and (b} the Newton-

flry=sin{ ¥} —x

Raphson method to determine a root of f{x) = —0.9x7 4
L7x + 2.5 using xo = 5. Perform the computation until £,

Use an initial guess of ay = 0.5 and fterate until £, = 0.01%,  is less than e, = 0.01%:, Also check your final answer,
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6.3 Determine the highest real root of fir) = " —fx® +

Ile —6.l:

{(a) Graphically.

{h) Using the Newton-Raphson method (three iterations,
= 35}

{e) Using the secant method (three iterations, x,_y = 2.3
and x; = 3.5).

{d) Using the moditied secant method (three iterations,
=358 =002),

(e} Determine all the roots with MATLARB.

6.4 Determine the lowest positive root of fiv)=

Tsinfx)e™ —1:

{a) Graphically.

{h) Using the Newton-Raphson method {three iterations.
xo =103

{c}) Using the secant method {three iterations, xp = 0.4
and xv; = (.3,

{d) Using the modified secant method (five iterations.
r=035=001)

f.5 Use (a) the Newton-Raphson method and (h) the modi-

fied secant method (5 = .05 10 determine a root of fiv) =

&% — 16,052 + 88.7507 — 192.0375x% + 116.35x + 316875

using an initial guess of xr =0.5825 and e, = 0.01%.

Explain vour results.

6.6 Develop an M-file for the secant method. Along with

the two initial guesses, pass the function as an argument.

Test it by solving Prob, 6.3,

0.7 Develop an M-file for the modified secant method.

Along with the initial guess and the perturbation fraction,

pass the function as an argument. Test it by solving

Prob. 6.3,

6.8 Differentiate Eq. (E6.4.1) to get Eq. (E6.4.2)

6.9 Employ the Newton-Raphson method 1o determine a

real root for fix) = —2 4+ 6x — dx® +0.54°, using an ini-

tial guess of (a) 4.5, and (b) 4.43. Discuss and use graphical

and analytical methods o explain any peculiarities in your

results,

610 The “divide and average” method, an old-time method

for approximating the square root of any positive number a,

can be formulated as

X+ aly;
2

Prove that this formula is based on the Newton-Raphson

algorithm.

G101 (a) Apply the Newton-Raphson method to the function

fiv) =tanhix® =9} o evaluate its known real oot at

x = 3. Use an initial guess of 1y = 3.2 and take a minimom

of three iterations. (b) Did the method exhibit convergence

onto its real root? Sketch the plot with the results for cach

iteration labeled.

Kigl =

6.12 The  polynomial  Fiv) = 0.0074x" — 0,284 +
335527 — 12,1835 + 5 has a real root between 15 and 20
Apply the Newton-Raphson method 1o this function using an
initial guess of &y = 16,15, Explain vour results.

6.13 In a chemical engineering process, water vapor (H; ()
is heated to sufficiently high temperatures that a significant
portion of the water dissociates, or splits apart, to form oxy-
gen (1) and hydrogen (Ha )

HaO = H: + %Og

Ff 1t 15 assumed that this is the only reaction involved, the
mole fraction v of H, O that dissociates can be represented by

x| 2p
K = P13
1=x¥V 2+x (Po :

where K is the reaction’s equilibrium constant and p, is the
total pressure of the mixture. If p; = 3 atm and K = 003,
determine the value of v that satisfies Eq, (P6.13.1).

fi.14 The Redlich-Kwong equation of state is given by

RT I¥
v=b  plo+ VT
where B = the universal gas constant [=0.518 klkg KJ].
T = absolute lemperature (K}, p = absolute pressure (kPa),

and v = the volume of a ke of gas (m*fkg). The parameters
o and B are calcolated by

p=

RIS .
a o= 0427 P - b= 0.03&6!:?7

where p. = 4600 kPa and T, = 191 K. As a chemical engi-
neer, you are asked to determine the amouant of methane fuel
that can be held in a 3-m” tank at a temperature of =40 °C
with a pressure of 65,000 kPa. Use a root locating method of
vour choice to calculate v and then determine the mass of
methane contained in the tank.
6.15 The volume of liquid Vin a hollow horizontal cylinder
of radius rand length L is related o the depth of the Hguid &
by

V= |:r2 cos ™! (?) - {F = A 2rh - h{l L
Determine fr givenr=2m. L=5m’, and V=8 m’.
6.16 A catenary cable is one which is hung between two
points not in the same vertical line. As depicted in
Fig. P6.16a, it is subject to no loads other than its own
weight. Thus, its weight acts as a uniform load per unit
length along the cable w (N/mj. A free-body diagram of a
section AR is depicted in Fig, P6. 166, where Ty and Ty are
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{ab

FIGURE P6.16

el

the tension forces at the end. Based on hortzontal and verti-
cal force balances, the following ditferential equarion model
of the cable can be derived:

x H 2
o=y o dy
—_ e — I| 1+ —
dxl T Ty dx
Calenlus can be employed to solve this equation for the
height of the cable v as a function of distance x:

Ty w Ty
¥o= ?cush(ﬁr) + ¥o — o
{a) Use a mumerical method to calculate a value for the
parameter Ty given values for the parameters w = )
and vy = 3, such that the cable has a height of y = 15 ar
x = 50.
(b} Develop a plot of v versus x for x = —350 10 100,
6.17 An oscillating current in an electric circuit is described
by § = e~ sin(2sr), where 1 is in seconds. Determine all
values of ¢ such that [ = 3.5

FIGURE P6.18

-

A
W
o

- 004 .
i
I
o

6.18 Figure PO.18 shows a circuit with a resistor, an induc-
tor, and a capacitor in parallel, KirchhofTs rules can be used
to express the impedance of the system as

I 1y
7=y (- 3)
where Z = impedance (221 and w15 the angular frequency.
Find the ¢ that results in an impedance of 100 £ vsing the
fzero function with initial guesses of | and 1000 for the
following parameters: & = 2250, C = 0.6 = 107" F, and
L=035H.
0.19 Real mechanical systems may involve the deflection
of nonlinear springs. In Fig. PO.19, o block of mass m is
released a distance & above a nonlinear spring. The resis-
tance force Fof the spring s given by

F o= —(kyd 4 kM)

FIGURE P6.19
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Conservation of energy can be used to show that

Uad¥ 1

3 + Ehd —mpgd —mgh

Solve for d. given the following parameter values: &y =
H0,000 g/5%, ky =40 /(s m*), m =95 g, ¢ = 2.81 m/s’,
and i = (.43 m.

6.200 Aerospace engineers sometimes compute the trajec-
tories of projectiles such as rockets. A related problem deals
with the trajectory of a thrown ball, The trajectory of a ball
thrown by a right ficlder is defined by the {(x. v) coordinates
as displayed in Fig, P6.20, The trajectory can be modeled as

0=

8 2
vo= (tan i 21,-3 p—yTy x
Find the appropriate initial angle th, if vy = 30 m/s. and the
distance to home plate is 90 m. Note that the throw leaves
the right fielder's hand at an elevation of 1.8 m and the
catcher receives it at [ om.
6.21 You are designing a spherical tank (Fig. P6.21) 10 hold
water for a small village in a developing country. The vol-
vme of liquid it can hold can be computed as
S [3R — i
3

where V = volume [ft], h = depth of water in tank [ft]. and
R = the tank radius [1t].

If B = 10 fi, what depth must the tank be filled to so that it
holds 1000 f7 Use three iterations of the most efficient nu-
merical method possible to determine vour answer. Determine

V=umh

FIGURE P6.21

FIGURE P6.20

the approximate relative error after each iteration. Also, pro-
vide justilication for yvour choice of method. Extra informa-
tion: {a) For bracketing methods, initial guesses of Dand £ will
bracket a single root for this example. {b) For open methods,
an initial guess of K will always converge.

6.22 Perform the identical MATLAB operations as those
in Example 6.7 to manipulate and find all the roots of the
polyiomial

Hilxi=lx+2Dx —6)x — Ifx +4)ix — K}

6.23 In control systems analysis, transfer functions are de-
veloped that mathematically relate the dynamics of a sys-
tem’s inpul 1o its output. A transfer function for a robotic
positioning system is given by

Cls) s 4974206+ 24

iy = = —
W)= ) P 155 £ 705% + 1535 390

where (s} = system gain, Oy} = system output, N(s) =
system input, and 5 = Laplace transform complex frequency.
Use MATLAB to find the roots of the numerator and de-
nominator and factor these into the form

(8 4 ary M -+ aa Wy + as)
G+ by s + bads + bas + ba)

Gis) =

whete a; and & = the roots of the numerator and denomina-
tor, respectively,
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and Matrices

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acguaint vou with linear algebraic
equations and their relationship to matrices and matrix algebra. Specific objectives
and topics covered are

*  Understanding what linear systems of equations are and where they occur in
engineering and science.
Understanding matrix notation.
Being able to identify the following types of matrices: identity, diagonal.
symmetric. triangular, and tridiagonal.

*  Kpowing how to perform matrix multiplication and being able to assess when
it is feasible.
Knowing how to represent a system of linear algebraic equations in matrix form.
Knowing how to solve lingar algebraic equations with left division and matrix
inversion in MATLAB.

YOU'VE GOT A PROBLEM

uppose that three jumpers are connected by bungee cords. Figure 7. 1a shows them
S being held in place vertically so that each cord is fully extended bul unstretched. We

can deline three distances, vy, vz, and xs, as measured downward from cach of their
unstretched positions, After they are released, gravity takes hold and the jumpers will even-
twally come to the equilibrium positions shown in Fig. 7.1,

Suppose that yvou are asked to compute the displacement of cach of the jumpers. If we
assume that each cord behaves as a linear spring and follows Hooke's law, free-body dia-
grams can be developed Tor cach jumper as depicted in Fig. 7.2,

123
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O |
1 | @ &5 kol — el — X0

P
HoE )
i

tal Unstretched (b} Stretched e ke - x)  the hin- X "y
FIGURE 7.1 FIGURE 7.2
Three individuals connecled by bungee cords. Freerbody diograms.

Using Newton’s second law, a steady-state foree balance can be written for each jumper:
a g kailxs - xp- kxy o 0

mag - k3lxs- xab kaxzo xp)- O

g kilxy- oap)- O

where m; - the mass of jumper i (kg), &; - the spring constant for cord j (N/m), x; - the
displacement of jumper § measured downward from the equilibrivm position (m), and g -
gravitational acceleration (9.81 m/s?). Collecting terms gives

(ko kalx < kaxg Comg
Ckexy - Gk ksdlan o kavy o omag 7.1

©kaks s Esxs - map

Thus, the problem reduces 1o solving a system of three simultancous equations for
the three unknown displacements. Because we have used a linear law for the cords, these
cquations are linear algebraic equations, Chapters 7 through 11 will introduce vou o how
MATLAB is used 1o solve such systems of cquations.
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7.1 WHAT ARE LINEAR ALGEBRAIC EQUATIONS?

Linear algebraic equations are of the general form,

dypky o diXy o o dpgky by
gy - darXz o o Xy h‘_r

(7.2}
felXp - X o dapdy o Dy

where the ¢'s are constant coefficients, the f's are constants, the x's are unknowns, and » is
the number of equations, All other algebraic equations are nonlinear,

7.1.1 Linear Algebraic Equations and Engineering Practice

Many of the fundamental equations of engincering and science are based on conservation
laws. Some Familiar quantities that conform to such laws are mass, energy, and momentum.
In mathematical terms, these principles lead to balance or continuity equations that relate
systemn behavior as represented by the levels or response of the quantity being modeled o
the properties or characteristics of the system and the external stimuhi or forcing functions
acting on the system.

As an example, the principle of mass conservation can be used to formulate a model
for a series of chemical reactors (Fig. 7.3a). For this case, the quantity being modeled is the
mass of the chemical in cach reactor. The system propertics are the reaction characteristics

FIGURE 7.3

T types ot SYSERS theat can be modeled using i'.:'_m{_]: U|gu;:bn;]icl gauations: {1 |L|rr1p|::d \.'U!'iﬂbl-.’}
sysbem thert irrveshviss c-:)up|{:d finite companants ana (-1 distributed varioble Fysham shat irvobees o
confingum,

T T T T
| | | |

Eeed —= 1, —:-.- i —*—xr-_ : +Il+li*1+ + X, =t
| | | |
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7.2

of the chemical and the reaciors” sizes and low rates, The forcing functions are the fecd
rates of the chemical into the system,

When we studied roots of equations, vou saw how single-componemt systems result in
a single equation that can be solved using root-location technigues. Multicomponent sys-
tems result in a coupled set of mathematical equations that must be solved simultancously,
The equations are coupled becanse the individual parts of the system are influenced by
other parts, For example, in Fig. 7.3a, reactor 4 receives chemical inputs from reactors 2
and 3. Consequently, its response is dependent on the quantity of chemical in these other
reaclors,

When these dependencies are expressed mathematically, the resulting equations are
often of the linear algebraic form of Eq. (7.1), The x's are usually measures of the magnitudes
of the responses of the individual components, Using Fig. 7.3«¢ as an example, 1 might
guantify the amount of chemical mass in the first reactor, 2 might quantify the amount in the
second, and so forth, The a’s typically represent the properties and characteristics that bear
on the interactions between components. For instance, the o’s for Fig. 7.3¢ might be reflec-
tive of the flow rates of mass between the reactors, Finally, the b's usually represent the fore-
ing functions acting on the system. such as the feed rate in Fig. 7.3a.

Multicomponent problems of these types arise from both lumped (macro-) or distrib-
uted (micro-) variable mathematical models (Fig. 7.3). Lumped variable problems involve
coupled finite components. Examples include trusses, reactors, and electric circuits, The
three bungee jumpers at the beginning of this chapler are a lumped system,

Conversely, distibuted variable problems atempt 1o describe the spatial detail of
syslems on a continuous or semicontinuous basis, The distribution of chemicals along the
length of an elongated, rectangular reactor (Fig. 7.36) is an example of a continuous vari-
able model, Differential equations derived from conservation laws specily the distribution
of the dependent variable for such systems, These differential equations can be solved nu-
merically by converting them o an equivalent system of simultaneous algebraic equations,

The solution of such scts of equations represents a major engineering application arca
for the methods in the following chapters. These equations are coupled because the vari-
ables at one location are dependent on the variables in adjoining regions. For example, the
concentration at the middle of the reactor in Fig, 7.30 18 a function of the concentration in
adjoining regions, Similar examples could be developed for the spatial distribution of wem-
perature, momentum, or eleciricity.

Aside Trom physical svstems, simultaneous linear algebraic equations also arise in a
variety of mathematical problem contexts, These result when mathematical funclions are
required to satisfy several conditions simultaneously, Each condition resulis in an equation
that contains known coelMicients and unknown variables, The techniques discussed in this
part can be used 0 solve for the unknowns when the equations are linear and algebraic,
Some widely used numerical technigues that employ simultaneous equations are regres-
sion analysis and spline interpolation,

MATRIX ALGEBRA OVERVIEW

Knowledge of matrices is essential for understanding the solution of linear algebraic equa-
tions, The following sections outline how matrices provide a concise way 1o represent and
manipulaie lincar algebraic equations,
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Column 3
[ e
iy d; M " O, | =— How2
(4] =
_"rw'l L2 L B am_
FIGURE 7.4
A e,

7.2.1 Matrix Notation

A marriy consists of a rectangular array of elements represented by a single symbol. As
depicted in Fig. 7.4, [A] is the shorthand notation for the matrix and «;; designates an indi-
vidual efement of the matrix.

A horizontal set of elements is called a row and a vertical set is called a cofumn. The
first subsecript § always designates the number of the row in which the element lies. The sec-
ond subscript j designates the column, For example, element a1 is in row 2 and column 3.

The matrix in Fig. 7.4 has m rows and n columns and is said to have a dimension of m
by n(orm - n) It is referred to as an m by n matrix.

Matrices with row dimension s - 1, such as

(bl I b o byl

are called row vectors. Note that for simplicity, the first subscript of each element is
dropped. Also, it should be mentioned that there are times when it is desirable to employ a
special shorthand notation to distinguish a row matrix from other types of matrices. One
way to accomplish this is to employ special open-topped brackets, as in- b '
Matrices with column dimension n - 1, such as
8
2
[c] -

O

are referred to as column vectors. For simplicity, the second subscript is dropped. As with
the row vector, there are occasions when it is desirable to employ a special shorthand
notation to distinguish a column matrix from other types of matrices. One way to accom-
plish this is to employ special brackets, as in-¢-.

In addition 10 special brackets, we will use case 1o distingnish between vectors (owercase) and mairices
LUPPercase ),
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Matrices where m - n are called sguare matrices. For example, a 3 - 3 matrix s

dyp o dip oaa
[A]- dy dzx odn
g3 dix dy

The diagonal consisting of the elements ay . aaz, and @33 is termed the principal or main
dicgonal of the matrix.

Square matrices are particularty important when solving sets of simultaneous linear
equations. For such systems, the number of equations (corresponding to rows) and the
number of upknowns (corresponding to columns) must be equal for a unique solution to be
possible. Consequently, square matrices of coetficients are encountered when dealing with
such systems.

There are a number of special forms of square matrices that are important and should
be noted:

A yymmetric matrix is one where the rows equal the columns—thatis, ai; -« for all
i"s and j's. For example,

L

I
[A]- 3
7

bd =
[ s I

isald. 3symmetric matrix.
A dingonal mairix is a square maitrix where all elements off the main diagonal are
equal to zero, as in

€
IA] ) 32

33

Note that where large blocks of elements are zero, they are left blank,
An ddentity mairix 15 a diagonal matrix where all elements on the main diagonal are
equal to 1. as in

1
[A]- 1
1

The symbol [1] is used to denote the identity matrix. The identity matrix has properties sim-
ilar to unity, That is,

[ANLF] - LEAT - [A]

An upper triangidar matrix is one where all the elements below the main diagonal are
7ero, as in

dyp diz a3
[A]- s
(5%}
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Adower triangular matriv is one where all elements above the main diagonal are zero,
HERE
ey
(Al fan an
VI (5 L
A banded matrix has all elements equal to zero, with the exception of a band centered
on the main diagonal:

iy Gz
frp Har s
[A]-
dyr day dy
LLEC T (L

The preceding matrix has a bandwidth of 3 and 1s ziven a special name—the fridiagonal
iy,

7.2.2 Matrix Operating Rules

Now that we have specified what we mean by a matrix, we can define some operating rules
that govern its use. Two m by n matrices are equal if, and only if, every element in the first
is equal to every element in the second—that is, [A] - [B]ifa; - by forall 7 and j.

Addition of two matrices, say, [A] and | 8], is accomplished by adding corresponding
terms in each matrix. The elements of the resulting matrix [C] are computed as

i g by

fori- 1.2,....mand j- 1.2...., n. Similarly, the subtraction of two matrices, say,
[E] minus [F]. is obtained by subtracting corresponding terms. as in

"'rl" . E._r‘.j . f”
fori - 1,2, ...mand j- 1.2,..., ¢ It follows directly from the preceding definitions

that addition and subtraction can be performed only between matrices having the same
dimensions.
Both addition and subtraction are commutative:

[(Al- [B]- [B]- [A]
and associative:
([A]l- [BD- [C]- [A]- ([B]- [CD
The multiplication of a matrix [A] by a scalar g is obtained by multiplving every ele-

ment of [A] by g. For example, fora 3 - 3 matrix:

fdyy gy gdyy
(D] glA] | gan gan gasx
Lam Rdy fdas
The product of two matrices is represented as [C] - [A][B], where the elements of [C]
are defined as

n
('”" Zdﬂ-bﬂ (7.3}
k- §
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5 9
. | -

Interior dimensions
are equal,
multiplication
is possible

3 1| — [IX6+1xT=22
g (5] v
Exterior dimensions define
1] 4 the dimensions of the result
FIGURE 7.5 _ FIGURE 7.6
Visual depiction of how the rows and celumns line up in Mairix muliplication can be performed only it

matrix multiplication.

the inner dimensions are equul.

where - the column dimension of [A] and the row dimension of [8]. That is, the ¢;; ele-
ment is obtained by adding the product of individoal elements from the ith row of the first
matrix, in this case [A], by the fih column of the second matrix [B8)]. Figure 7.5 depicts how
the rows and columns line up in matrix muoltiplication,

According to this definition, matrix multiplication can be performed only if the first
matrix has as many columns as the number of rows in the second matrix, Thus, if [A] is an
m by n matrix, [£] could be an n by { matrix. For this case, the resulting [C] matrix would
have the dimension of m by {. However, if [B] were an m by [ matrix, the muliplication
could not be performed. Figure 7.6 provides an easy way to check whether two matrices
can be multiplied,

If the dimensions of the matrices are suitable, matrix multiphication is associarive.

([AIBDIC] - [ANBICT
and distributive:
[ANIBT- [C - [ANB] [AJ(C)
or
((Al- [BDICT- [ANICT- [BlIC]
However, multiplication is not generally commgarive:
[AllB]- [B]A]

That is. the order of multiplication is important.

Although multiplication is possible, matrix division 13 not a defined operation. How-
ever. if a mairix [A] is square and nonsingular, there is another matrix [A] ', called the
fmverse of [A], for which

[ANAT © - (AT '[A]- U]

Thus, the multiplication of a matrix by the inverse is analogous to division, in the sense that
a number divided by itself is equal to 1. That is, multiplication of a matrix by its inverse
leads to the identity matrix.
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EXAMPLE 7.1

The inverse of a2+ 2 matrix can be represented simply by

(Al - I ayn o
dyydyy - dyxdy) U2 i

Similar formulas for higher-dimensional matrices are much more involved. Chapter 10 will
deal with techniques for using numerical methods and the computer to calculate the inverse
for such systems.

Two other matrix manipulations that will have utility 1n our discussion are the trans-
pose and the angmentation of a matrix. The franspose of a matrix involves transforming its
rows into columns and its columns into rows. For example, for the 3 - 3 matrix:

tyg i dyy
(Al- |axn an ax

fyp @31 33
the transpose, designated [A]", is defined as

; ap dn o dy
(A" - tan an axn
a3 dy di

In other words. the element a;; of the transpose is equal to the a;; element of the original
matrix.

The transpose has a variety of functions in matrix alzebra. One simple advantage is
that it allows a column vector to be written as a row, and vice versa. For example. if

]
e - I
1
then
r
A A T T A B

In addition. the transpose has numerous mathematical applications.

The final matrix manipulation that will have utility in our discussion 15 gugmentarion.
A matrix 1s augmented by the addition of a column {or colmmns) to the original matrix. For
example, suppose we have a 3+ 3 matrix of coefficients. We might wish to augment this
matrix [A] with a 3 - 3 identity matrix to yield a 3-by-6-dimensional matrix:

oy dpp dny I 0 0
iy day dn o1 0
o1y dlyp i1y o 0 1
Such an expression has utility when we must perform a set of identical operations on the

rows of two matrices. Thus, we can perform the operations on the single augmented matrix
rather than on the two individual matrices.

MATLAB Malrix Manipulations

Problem Statement.  The following example illustrates how a variety of matrix manipu-
lations are implemented with MATLAB. 1t is best approached as a hands-on exercise on the
computer,
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Solution.  Create a 3+ 3 matrix:
== A o= [1 5 6:7 4 2;-3 6 71

A =

7
-3

oy
= b

The tramspose of [A] can be obtained using the * operator:

== B

aAnsg =
1 ! -3
5 4 &
6 2 7

Next we will create another 3 - 3 matrix on a row basis, First create three row vectors:

== % o= [B 8 H];
== W = [-5 8 11;
= £ = {4 B 2];

Then we can combine these to form the matrix:

== B =[xy vy ozl
E =
a ] @
-5 g 1
4 a8 2

We can add [A] and [B] together:

=2 0 = A4B

C- =
2 11 15
2 1z )
1 14 9

Further, we can subtract [B] from [C] to arrive back at [A]:
== O = (-B

C =

-3
1=
1 bl oo

Because their inner dimensions are equal, [A] and | B] can be multiplied
o AYE
alls =
7 94 26
£4 a0 71
-45 BE -7
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Note that [A] and [B] can also be multiplied on an element-by-element basis by including
a period with the multiplication operator as in

== BLYE
ans =
g 30 54
=15 32 2
-12 458 14
A2 3 matrix can be set up

=» I = [1 4 2;5 8 1];
If [4] is multiplied times [D]. an error message will occur
== AT

YT Error usitg === ¥
Inner matrix dimensions must agree.

However, if we reverse the order of multiplication so that the inner dimensions match,
matrix multiplication works

== D¥A
ans =

20 3% 35
58 63 53

The matrix inverse can be computed with the inv function:

== BT = invi{d)

AT =
0.2462 0.0154 0.2154
0. 8462 00,3846 0.6154
0.8308 =0, 3231 -0.476%

To test that this is the correct result, the inverse can be multiplied by the original matrix o
give the identity matrix:

o AFAT

ans =
1. 0003 -0, 0000 -0, 0003
0.00002 L.00od -0.0000¢
0,000 -0, 0000 1., 00006

The eve function can be used to generate an identity matrix:

=m I o= &yel{d)
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I =
1 U a
0 1 0
0 0 1

Finally, matrices can be augmented simply as in

»» hug = [A I}

Aug =
1 5 & 1 a o
7 4 2 1 1 0
-3 B 7 {0 0 1

Note that the dimensions of a matrix can be determined by the =:ize function:

== [n,m] = size{Aug)

(<41

7.2.3 Representing Linear Algebraic Equations in Matrix Form

It should be clear that matrices provide a concise notation for representing simultaneous
linear equations. For example, a 3 - 3 set of linear equations,

dyvyc dpXa @ My
Xy - darXo - dagie !)3 {7.4)

dyvy o dnXyc dniy o I
can be expressed as
(Afx - b (1.5)

where [A] is the matrix of coefficients:

ap odiz s
[A]- oy dn
dy dap da

B 1s the column vector of constants:
¥ TLENEY TR S
and -x- s the column vector of unknowns:

xt o x x x
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7.3

EXAMPLE 7.2

Recall the definition of matrix muliplication [Fq. (7.3] 1w convince yourself that
Egs. (7.4) and (7.5) are equivalent. Also. realize that Eg. (7.5) is a valid matrix multiplica-
tion hecause the number of columns # of the first martrix [A] is equal 1o the number of rows
it of the second matrix {x].

This part of the book is devored 1o solving Eq, (7.5) for {x}. A formal way to obrain a
solution using matrix algebra is to multiply each side of the equation by the inverse of [A]
1o yield

[A] '[A)x - [A] "B
Because [A] '[4] equals the identity matrix, the equation becomes
x- [A] Vb (7.6}

Therefore, the equation has been solved for {x}. This is another example of how the inverse
plays a role in marix algebra that is similar to division. It should be noted that this is not a
very efficient way 1o solve a system of equations, Thus, other approaches are emploved in
numerical algorithms. However, as discussed in Section 10.1.2, the matrix inverse itself
has great value in the engineering analyses of such systems.

It should be noted that systems with more eguations (rows) than unknowns (columns}),
mt = n, are said w be overderermined, A typical example is least-squares regression where
an equation with n coefficients is fit to m data poinis (v, v). Conversely. systems with less
equations than unknowns, s < n, are said 1o be underderermined. A typical example of
underdetermined systems is numerical optimization.

SOLVING LINEAR ALGEBRAIC EQUATIONS WITH MATLAB

MATLAR provides two direct ways 1o solve systems of linear algebraic equations. The most
efficient way is to employ the backslash, or “lefi-division,” operator as in

== x = Ak
The second is to use matrix inversion:
== x o= invi{i)*h
As stated at the end of Section 7.2.3, the maurix inverse solution is less efficient than using
the backslash, Both options are illusirated in the following example.
Solving the Bungee Jumper Problem with MATLAB

Problem Statement.  Use MATLAB to solve the bungee jumper problem described at the
beginning of this chapter. The parameters for the problem are

Spring Constant Unstretched Cord

Jumper Mass (kg) (N/m) Length (m)
Tog | 1) &0 50 2
tidkdle |2) 70 100 20

Boftom (3] 80 30 20
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Solution.  Substituting these parameter values into Eq. (7.1) gives

150 - 100 0 X 3BE.6
1000 150 - 50 yxa g 0 (0867
0 - 50 50 Xy 7848

Start up MATLAB and enter the coefficient matrix and the right-hand-side vector:

== K = [150 -100 0;-100 150 -50;0 -50 501
E =
150 1ad ]
-100 150 -50
Q -50 =
w» mg = [588.6; 686.7; 784.8]
thg =
588.6000
I _ FEE G
686, 7000 0
T84.8000
Employing left division yields By
=x oM = KANG
9- 0
X =
41,2020
55,5170 L &
71.6130
Alternatively, multiplying the inverse of the coefficient matrix 80—
by the right-hand-side vector gives the same result:
=% ¥ o= inviE) *mg B
X =
41.2020 120 —
55.91740
o
T1.6130 '
Because the jumpers were connected by 20-m cords, their {a} (b}
initial positions relative to the platform is
. FIGURE 7.7
=» xd o= [20;40;60]; Pu;-;ili{':ns of throe
Thus, their final positions can be calculated as indrviduals
conneched by
= Xf = 3+xi bungee cords,
- [ | Unstrekchad
xf = and | | streiched
Gl F020
95.59170

131.6130

The resulis, which are displayed in Fig. 7.7, make sense. The first cord is extended the
longest because it has a lower spring constant and 15 subject o the most weight (all three
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jumpers), Notice that the second and third cords are extended about the same amount,
Because it is subject 1o the weight of two jumpers, one might expect the second cord o be
extended longer than the third, However, because it is stiffer (i.e., it has a higher spring
constant), it stretches less than expected based on the weight it carries.

PROBLEMS

7.1 Given a square matrix [A]. write a single line MATLAB
command that will create a new matrix [Aug] that consists of
the original matrix [A] augmented by an identity matrix [f].
7.2 A number of matrices are defined as

4 5 4 3 7
(Al |1 2 - |12 6
5 6 1 0 4
?
5 403 6
Dy,
¢ ‘]3 “[2:15}
" ,:,?2 . [z 0 |}
40 s o3
G -8 6 4

Answer the following questions regarding these matrices:

{a) What are the dimensions of the matrices’?

(b} Identify the square, column, and row matrices.

(e) What are the values of these elements: apa, P, di.
ez, f12. 2127

(d} Perform the following operations:

(b E]- [8] i) [BY- [E] (3) [A] [F]
4y 5- [B] (5) [A]- [8] (6) [B]- [A]
(G 1 s [ 9 [0
My 7. [8]

7.3 Write the following set of equations in matrix form:
10 3.'{3' .."Jf|
drs Trs- 30- 0
Xy ?_Y]- 40 - 3).'2' S.'t'g

Lise MATLAB to solve for the unknowns, In addition, use it
to compute the transpose and the inverse of the coctficient
matrix.

7.4 Three matrices are defined as

6 1

- 40 1 2
[XT]- ll; ;J' [¥1- [I 3:| {z]- [_6 4]

Perform all possible multplications that can be compued
between pairs of these matrices.

7.5 The position of three masses suspended vertically by a
series of identical springs can be modeled by the following
steady-state force balances:

0- kixg- x) mgg- kg

O- kixy- xa)- mag- kivz- xp)
O« mag: kixz. x3)
Ifg- 981 m/s my- 2kg.oms- 3keoms o 2.5 ke, and

the &'s -
IMEnes x.
7.6 Five reactors linked by pipes are shown in Fig, P7.6.
The rate of mass flow through cach pipe 15 computed as the
product of flow {1 and concentration (). At steady state, the
mass flow into and out of cach reactor must be equal. For ex-
ample, for the first reactor, a mass belanee can be written as

ocor - Gaiez - Chser - Qoo

Write mass balances for the remaining reactors in Fig. P7.6
and express the eguations in matrix form. Thenuse MATLAB
to solve for the concentrations in each reactor,

7.7 An important problem in structural engincering is that
of finding the forces in a statically determinate truss
{Fig. P7.7}. This type of structure can be described as a sys-
tem of coupled finear algebraic equations derived from force
balances. The sum of the forces in both horizontal and verti-
cal directions must be zero at each node, becanse the system
is at rest. Therefore, for node 12

ZF-“" 0 - Ficos30 - Fyeosel - Fip

10 Nfm, use MATLAB 1o solve for the displace-

Y Feo 0 Fisind0 - Fisin60 - F,
for node 2;
ZF'H- O Foo Fleosi0 - Foy- M
Y Fvo 00 Fysind0 - F,e W
for node 3:
ZFH- 0 - Fy- Ficos60 - Fa,
ZFV- 0- Fysinl - Fy, -V,
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i D =2
Q=3 —= 2
G
Qe =1
Q=5 ] Q=3 G =1 Ou =1
o = 10 i
=1 gy =18
05 =1
Q{|3 = 8 ol
e b
c = 20

FIGURE P7.6

FIGURE P7.7

where £y is the external horizontal force applied o node 7
{where a positive force is from left to right) and F; ., is the
external vertical force applied o node @ (where a positive
foree is upward), Thus, in this problem, the 1000-1b down-
ward force on node 1 corresponds to Fy, - - 1000, For this
case all other F; s, and F; s are zero. Express this set of
linear algebraic equations in matrix form and then use
MATLAB to solve for the unknowns.

7.8 A common problem in electrical engineering involves
determining the currents and vaoltages at various locations in
resistor circuits, Such problems are solved using Kirchhofl's
carrent and voltage rules, The current rule states that the

algebraic sum of all corrents entering a node must be zero.
The voltage rule specifies that the algebraie sum of the po-
tential differences (ie.. volage changes) in any loop must
equal zero, Application of these rules results in systems of
simultaneous linear algebraic equations because the various
levops within a circait are coupled. For example, for the cir-
cuit shown in Fig, PT.8, Kirchhoff's current rule is applied at
each node to yield

fiz Iz iz 0
fos dsz sy O
iy daz 0

isg e O

FIGURE P7.8

2 E=T00 5 2=8R
iyl A AL {1V, = 200V
=R=50 ZR=100
- -
i iyt 5 TR ﬁDVr.=UU
R=150 R =200
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Application of the voltage rule together with Ohm’s law to
each of the two loops gives

CisgRay o iRz dnRunc daRs o O
fpzRyn - 200 0

where R;;  the resistance between node / and j as shown
in Fig. PT.H. Express this set of linear algebraic equations
in matrix form and then use MATLAB tw solve for the
unknowins.

7.9 Consider the three mass-four spring system in Fig, P7.9,
Determining the equations of motion from Z Fy, - ma, for
each mass using its free-body diagram results in the follow-
g differential equations:

(u)“ _ (k: ) - 0
iy LR}
ks ks k k
(_-)I]. ( : j).rzl (i)x}l D
my s nia
X- (k—1) X3 (h : h) xz- (}
iy iy

CinsRes o TR

-

-

[}

"

£ -
7
7
7
bttt

ﬁ//ﬂ//é

FIGURE P7.9

[0 MNfm. ks - ks - 40 MN/m, and my -
1 kg, The three equations can be wrilten

where &; - &y -
Miy - My o Ml -
in matrix form:

0- {Acceleration vector}
Tl matrix }{ displacement vector x|

Al a specific tme where v - 005 m. - 004 m, and
xy - 0,03 m, this forms a widiagonal matrix, Use MAT-
LAB 1o solve for the acceleration of each mass.
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to describe the Gauss elimination algorithm
for solving linear algebraic equations. Specific objectives and topics covered are

*  Knowing how to solve small sets of linear equations with the graphical method
and Cramer’s rule.

*  Understanding how to implement forward elimination and back substitution as
in Giauss elimination.

®*  Understanding how to count flops to evaluate the efficiency of an algorithm.

*  Understanding the concepts of singularity and ifl-condition,

*  Understanding how partial pivoting is implemented and how it differs from
complete pivoting.

*  Recognizing how the banded structure of a tridiagonal system can be exploited
to obtain extremely efficient solutions.

tihe end of Chap. 7, we stated that MATLARB provides two simple and direct meth-
ods for solving systems of linear algebraic equations: left-division,

R N
and matrix inversion,

= X o= inviA)l*h

Chapters § and 9 provide background on how such solutions are obtained. This mate-
rial is included to provide insight into how MATLAR operates. In addition, it is intended to
show how you can build your own solution algorithms in computational environments that
do not have MATLAR’s built-in capabilities.

140
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8.1

The technigque described in this chapter is called Gauss elimination because it involves
combining equations 1o eliminate unknowns, Although it 1s one of the carliest methods for
solving simultaneous equations, it remains among the most important algorithms in use
today and is the basis for linear equation solving on many popular software packages in-
cluding MATLAB,

SOLVING SMALL NUMBERS OF EQUATIONS

Before proceeding to Gauss elimination, we will describe several methods that are appro-
priate for solving small (n = 3y sets of simultaneous equations and that do not require a
computer. These are the graphical method, Cramer’s rule, and the elimination of unknowns.

8.1.1 The Graphical Method

A graphical solution is obtainable for two linear equations by plotting them on Cartesian
coordinates with one axis corresponding 1o vy and the other 10 x2. Because the equations
are linear, each equation will plot as a straight line, For example, suppose that we have the
following equations;

vy 4 2o =18
—xy 4+ 2 =2

If we assume that x; is the abscissa, we can solve each of these equations for x;:

3
Xy = _Exl +9

Ko o= %J;g +1

The equations are now in the form of straight lines—that is, v = (slope) x| + inter-
cepl. When these equations are graphed, the values of xy and xz at the intersection of the
lines represent the solution {Fig. 8.1). For this case, the solution is vy =4 and x; = 3.

For three simultaneous equations, each equation would be represented by a plane in a
three-dimensional coordinate system. The point where the three planes intersect would rep-
resent the solution. Beyond three equations, graphical methods break down and, conse-
quently, have linle practical value for solving simultancous equations. However, they are
useful in visvalizing properties of the solutions,

For example, Fig. 8.2 depicts three cases that can pose problems when solving sets of
linear equations. Fig. 8.2a shows the case where the two equations represent parallel lines.
For such situations, there is no solution becaose the lines never cross. Figure 8.26 depicts
the case where the two lines are coincident. For such situations there is an infinite number
of solutions. Both types of systems are said to be singular.

In addition, systems that are very close to being singular (Fig. 8.2¢) can also cause
problems. These systems are said (o be ill-conditioned. Graphically, this corresponds 1o the
fact that it is difficult 1o identify the exact point at which the lines intersect. 1l-conditioned
systems will also pose problems when they are encountered during the numerical solution
of linear equations, This is becavse they will be extremely sensitive to round-off error,



| Chapra: Appliad Numerical | 8. Gauss Elimination Taxt 5 Tha MR-l
Mathods with MATLAB for
Engineers and Scientists

Campaenas, 2004

142 GAUSS ELIMINATION

Solution: x, = d:x, = 3

FIGURE 8.1

Graphical solution of o set of tvo simulianesus linear algebraic equations. The inlersection of the
lines reprasents the solution,

Lal i {e)

FIGURE 8.2 _
Grophical depiclion of singular and ilkconditioned systems: |- | no solution, [+ | infinite sclufions, and
{+) ilconditioned system where the slopes are so closs that the point of intersection is difficult 1o detect visually.

8.1.2 Determinants and Cramer’s Rule

Cramer’s rule is another solution technique that is best suited to small numbers of equa-
tions. Before describing this method, we will briefly review the concept of the determinant.
which is used to implement Cramer’s rule. In addition, the determinant has relevance to the
evaluation of the ill-conditioning of a matrix.
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Determinanis.  The determinant can be illustrated for a set of three equations:
[Al{x} = {b]
where [A] s the coefficient matrix
dyy  dyp dy
(Al =] an an  axn
ty  dy dy
The determinant of this system s formed from the coefficients of [A] and is represented as
dip iz i
I =iy i dos
dap diyz da3
Although the determinant D and the coefficient matrix [A] are composed of the same
elements, they are completely different mathematical concepts. That is why they are dis-
tinguished visvally by using brackets 1o enclose the matrix and straight lines to enclose the
determinant. In contrast to a matrix, the determinant is a single number. For example, the
value of the determinant for two simultaneous equations
D= dayp gz
da (i
is calculated by
D = ayjayn — apay
For the third-order case, the determinant can be computed as
D =ay|" 98| _ 4,00 98 5|1 an 8.1y
iy 0 iy iy 32
where the 2 by 2 determinants are called minors.
EXAMPLE 8.1  Determinanis

Problem Statement.  Compute values for the determinants of the systems represented in
Figs. 8.1 and 8.2

Solution.  For Fig. 8.1:

D= _3] g =32} - 2=1)=8§

For Fig, 8.2a:

-1 1 ~1
D=, 2 = () — | —
=3

For Fig. 8.2h:

0

p=1"7 o loy1en=0
=172 ==z =1=D=
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For Fig. 8.2¢:
1
-3 | 1 -23
D= g = —— — = —().
‘_H , 2{]} i( 5 ) (.04
S
In the foregoing example. the singular systems had zero determinants. Additionally,
the results suggest that the system that is almost singular (Fig. 8.2¢) has a determinant that
is close to zero. These ideas will be pursued further in our subsequent discussion of ill-
conditioning in Chap. 10,
Cramer’s Rule.  This rule states that each unknown in a system of linear algebraic equa-
tions may be expressed as a fraction of two determinants with denominator £ and with the
numerator obtained from £ by replacing the column of coefficients of the unknown in
guestion by the constants 1y, ba, ..., by, For example, for three equations, 1 would be
computed as
by dpn o aps
by an axn
o= b3 an aw
A D
EXAMPLE 8.2 Cramer's Rule

Problem Statement. Use Cramer's rule to solve

03x + 0520+ xy = —0.01
0.5x; + x4 L9y = 0.67
Ol +03 x0 + 058 = —0.44

Solution.  The determinant I} can he evaluated as [Eq. (8.1)]:
. l 1.9 L0519 05 1] a
=033 057 %201 05 E'U.l 0.3‘ = ~0.0022
The solution can be calculated as
-0.01 .52 1
0.67 | 1.9
_l-044 03 05l o038
"= —0.0022 D002 T
03 =001 1
a5 067 1.9
1o -044 05! 00649 L
= ~0.0022 = Tooom -~ 207
0.3 0352 001
0.5 1 67
_lo1 03 —oaa| —oosse o
e —0.0022 T Toooz T
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For more than three equations, Cramer’s rule becomes impractical because, as the
number of equations increases, the determinants are time consuming to evaluate by hand
{or by computer). Consequently, more efficient altiernatives are used. Some of these alier-
natives are based on the last noncomputer solution technigue covered in Section 8, 1.3—the
elimination of unknowns,

8.1.3 Elimination of Unknowns

The elimination of unknowns by combining equations is an algebraic approach that can be
illustrated for a set of two equations;

dyy +dppx =h (8.2}
(X +dany: = (8.3}

The basic strategy is to multiply the equations by constants so that one of the unknowns
will be eliminated when the two equations are combined. The result 15 a single equation
that can be solved for the remaining unknown. This value can then be substituted into either
of the original equations to compute the other variable,

For example, Eq. (8.2) might be multiplied by a2; and Eq. (8.3) by @y 1o give

ardpky + dndpzyn = aynhy (8.4}
dyanXy + i = anb i8.5)

Subtracting Eq. (8.4) from Eq. (8.5) will, therefore, eliminate the x) term from the equa-
tions to vield

dytzaXs = dndyaks = dibs — aa by
which can be solved for

dyby — aniy

, = (8.6}
dppdyy — g
Equation (8.6) can then be substituted into Eq. (8.2}, which can be solved for

3y = azby by ®.7)

dypdzzy — dzydz

Notice that Egs. (8.6) and (8.7) follow directly from Cramer’s rule:

lhl [
b an  anb —anh
e diy 4z B dydyy — g

L I

ay by
e bl anb —aub
e gy dgr B dydyy —aadg

dx o dn
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8.2

The elimination of unknowns can be extended 1o systems with more than two or three
cquations. However, the numerous calculations that are required for larger systems make
the method extremely tedious (o implement by hand, However, as described in Section 8.2,
the technigue can be formalized and readily programmed for the computer.

NAIVE GAUSS ELIMINATION

In Section 8.1.3, the elimination of unknowns was used 1o solve a pair of simultancous
eqquations, The procedure consisted of two steps (Fig, 8.3):

I. The equations were manipulated to eliminate one of the unknowns from the equations.
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the result back-substituted into
one of the orginal equations to solve for the remaining unknown.

This basic approach can be extended to large sets of equations by developing a sys-
tematic scheme or algorithm to eliminate unknowns and to back-substitute. Gauss elimina-
tion is the most basic of these schemes.

This section includes the systematic techniques for forward elimination and back sub-
stitution that comprise Gauss elimination. Although these techniques are ideally suited for
implementation on computers. some modifications will be required to obtain a reliable
aloorithm. In particular, the computer program must avoid division by zero. The follow-
ing method is called “naive” Gauss elimination because it does not avoid this problem.
Section 8.3 will deal with the additional features required for an effective computer
program.

FIGURE 8.3
The two phases of Gauss elimination: [+ | forward elimination and (- | back substifstion,

[y @ a1 By
!
iy dp ap | by
i
1
|y ! b.\_
J’ {a) Forward
elimination
(@ o a1 By
:
a5 dw b
!
L s : f}'_',_
X = Bhfals
. (bl Back
R R R i
= Bty substitution
% = by = a0 = apnliay,



| Chapra: Appliad Numerical | 8. Gauss Elimination Taxt 5 Tha MR-l

Mathads with MATLAB for
Engineers and Scientists

Campaenas, 2004

B.2 MNAIVE GAUSS EUMINATION 147

The approach is designed to solve a general set of 7 equations:

Ay iz F e oo b dpyy =y (8.8a)
d21X) + @Xe F dura 4 o+ dp Xy = o (880
Xy 0280 + daaks o e ke = by (8.8c)

As was the case with the solution of two equations, the technigue for n equations consists
of two phases: elimination of unknowns and solution through back substitution.

Forward Elimination of Unknowns. The first phase is designed to reduce the set of
equations to an upper triangular system (Fig, 8.3a). The initial step will be to eliminate the
first unknown x; from the second through the nth equations. To do this, multiply Eq. (8.8a)
by @y oy to give

g LC| 2y L0 |
411X + —djars + —ajaky o —dpx, = —h (8.9}
0 )

iy g It
Now this equation can be subtracted from Eq. (8.8h) to give
(dll - aiﬂu)-'fz +- 4 (“'2!! - aiﬂm)l‘u =hy— b,
da a LE3 ]
or
sz + - oy, Xy = D)

where the prime indicates that the elements have been changed from their original values.

The procedure is then repeated for the remaining equations. For instance, Fq. (8.8q)
can be multiplied by as; /oy and the result subtracted from the third equation. Repeating
the procedure for the remaining equations results in the following modified system:

fypxp A dppX +apEds e ek =0 (8. H0a)
Uy Xy + day Xy + -, Xy = b (8.10b)
@ypX2 + @3Xa + o+ ay, X, = b (8.10¢)
a:al'}"z + H:H'r.’l +ee ﬂ:mx” = b.:.' {8104

For the foregoing steps, Eq. (8.8a) is called the pivor equation and ayy is called the
pivor element. Note that the process of multiplying the first row by a2y /ay is equivalent to
dividing it by a7 and multiplying it by 2. Sometimes the division operation is referred to
as normalization. We make this distinction becanse a zero pivot element can interfere with
normalization by causing a division by zero. We will return to this important issue after we
complete our description of naive Gauss elimination.

The next step is to eliminaie x> from Eq. (8.10¢) through (8.10J). To do this malti-
ply Eq. (8.108) by ais /a5, and subtract the result from Eq. (8.10¢). Perform a similar
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elimination for the remaining equations 1o yield
dpx) Fapr Fapan oo Fdpg, =
] ! ' ’
(337 + oy Xy + - - F ey Xy =B

dizXa 4o Halx, = by

BF L i
(ks + o gk = by

where the double prime indicates that the elements have been modified twice,

The procedure can be continued using the remaining pivol equations. The final ma-
nipulanon in the sequence is to use the (r — [th equation o eliminate the x,—; term from
the nth equation. At this point, the system will have been transformed 1o an upper triangu-
lar system:

dppry ey Fapars oo Foads =M (8.1 1a)
@y X7 + a5y + oo ahx, = b (8.11h)

(335 4 o Fag, Xy = b (8.11c)

alt "V, = prh (8.11)

Back Substitution.  Equation (8.11d) can now be solved for x,:

for=1}
. b
TN

AR

(8.12)

This result can he back-substituted into the (;m — 1)th equation to solve for x,_;. The pro-
cedure, which is repeated to evaluate the remaining x’s. can be represented by the follow-

ing formula:
fl

fi-1) -1y
'be - Z ey Xi

j=itl

Xpo= fori=n—1l.n—2...., 1 (815

=1

iy

Maive Gauss Elimination

Problem Statement,  Use Gauss elimination o solve

3o — 0k —0.2xy = 785 (E8.3.1)
O.lxy + Tap—03xy = —193 (E8.3.2)
030, —02v:+ 10xy = 714 (E&.3.3)

Solution.  The first part of the procedure is forward elimination, Multiply Eq. (E8.3.1)
by 0.1/3 and subtract the result from Eq. (E8.3.2) 1o give

T00333x0; —0.293333y, = —19,5617
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Then multiply Eq. (E&3.1) by 0.3/3 and subiract it from Eq. (E8.3.3). After these opera-
tions, the set of equations is

3x) — 0y — 0.2y = T.85 {E8.3.4)
7003330 — 0.293333x; = - 19.5617 (ER.3.5)
— (L190000x + 10020005 = 706150 (ER.3.6)

To complete the forward elimination, x; must be removed from Eq. (E8.3.6), To accom-
plish this, multiply Eqg. (E8.3.5) by —0.190000/7.00333 and subiract the result from
Eq. (ER.3.6). This eliminates x> from the third equation and reduces the system o an upper
triangular form, as in

3y - 0l — 0.2y = 7.8 {E8.3.7)
7003330 — 0.293333x3 = —19.5617 {ER.3.8)
10,0120x3 = 70,0843 {E8.3.9)

We can now solve these equations by back substitution. First, Eq. (E8.3.9) can be
solved for

T0.0843

X3 = m = ?.mm3
This result can be back-substituted into Eq. (E8.3.8), which can then be solved for
—19.5617 + 0.293333(7.00003)
= = —2.50000
2 7.00333 2

Finally, x3 = 7.00003 and x; = —2.50000 can be substituted back into Eq. (E8.3.7), which
can be solved for

785+ 0.1(-2.50000) + 0.207.00003)

=3
. 3.00000

X1

Adthough there is a slight round-off error, the results are very close to the exact solution of
Xy=3 y2 = =25 and x3 = 7. This can be verified by substituting the results into the
original equation set:

3(3) - 0.1(—2.5) — 0.2(7.00003) = 7.84999 = 7 85

0103 + T(=2.5) — 0.3(7.00003) = —1930000 = —19.3

0.3(3) — 0.2(—2.5) + 1(7.00003) = 714003 = 71.4

8.2.1 MATLAB M-file: GaussNaive

An M-file that implements naive Gauss elimination is listed in Fig. 8.4, Notice that the
coefTicient matrix 2 and the right-hand-side vector & are combined in the augmented ma-
trix 2ug, Thus, the operations are performed on 2ug rather than separately on 2 and b,
Twao nested loops provide a concise representation of the forward elimination step. An
outer loop moves down the matrix from one pivot row o the next, The inner loop moves
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function x = GaussNaiveld, bk}
% GaussMaive (s, bl:

% Gauss elimination without piwveting.

% input:

% A = coefficient matrix

¥ B = right hand side wvector

% putput:

% ¥i= solurion vector

[#,11] = sizeial;

ifm = n, error{'Matrix A misE be squaretl; end
bk = n+l:

Aug = [A bis

% forward sliminabtion
far s = e
Gh b R
factor = Bugii,k)/Aug{k,ki;
Bugli,k:nby = Augfii, k:nh)-factor*aug(k, k:nb);
eTid
end
% back substitution
X = zerosin,l):

zinl = Bugin.nb)/Augin.nl;
G b SR L
¥{i} = (Augli.nbi-Augi{i,i=l:n)*x{izl:n)) augli,i);
et
FIGURE 8.4

M Mdile 1o implemant noive Gauss elimination.

below the pivotl row to each of the subsequent rows where elimination is 1o take place,
Finally, the actual elimination is represented by a single line that takes advanage of
MATILARBs ability to perform matrix operations.

The back-substitution step follows directly from Eqs. (8.12) and (8.13), Again,
MATLARs ability to perform matrix operations allows Fq. (8.13) 1o be programmed as a
single ling,

8.2.2 Operation Counting

The execution time of Gauss elimination depends on the amount of floating-point opera-
fions (or flopy) involved in the algorithm, On modern computers using math coprocessors,
the time consumed to perform addition/subtraction and muliiplication/division is about
the same. Therefore, totaling up these operations provides insight into which parts of the
algorithm are mosi time consuming and how computation time increases as the sysiem gets
larger.
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Before analvzing naive Gauss climination, we will first define some quantities that
facilitale operation counting:

M

Docfi=c Z G Z [ + gy = Z flir+ Z &) (8.14a.b)
i=1 i=1 i=l i=l

=1

m Eiis

E:i:I+I+[+~-+I:ur E:l=m—k+l (R.14e.d)
f=i [l

" 2

i
Z;=l+2+3+,..+m=%=%+mm} (8.14¢)
i=l
1] . . . 192 1 3
Y=g = T D T L0 a4
i=1 h

where O{m") means “terms of order m" and lower.”

Now let us examine the naive Gauss elimination algorithm (Fig. 8.4} in detail. We will
first count the tlops in the elimination stage. On the first pass through the outer loop. k = 1.
Therefore, the limits on the inner loop are from § = 2 to n. According to Eq. (8. 144 ). this
means that the number of iterations of the inner loop will be

i

Yl=n-24l=n-1 (8.15)

i=2
For every one of these iterations, there is one division to calculate the factor. The next line
then performs a multiplication and a subtraction for each colunn element from 2 to nb.
Because nbh = n + 1, going from 2 to nd results in n multiplications and n subtractions.
Together with the single division, this amounts to # -+ | multiplications/divisions and n
addition/subtractions for every iteration of the inner loop. The total for the first pass
through the outer loop is therefore (1 — 1Mn + 1) multiplication/divisions and {(n — [ Mn}
addition/subtractions.

Similar reasoning can be used to estimate the flops for the subsequent iterations of the
outer loop. These can he summarized as

Quter Loop inner Loop Addition/Subtraction Multiplication/Division

flops flops
1 2o [ — 1in| fr — T 4 T}
g dom n— 2in— 1} fr — Zijn}
E+ 1 on =N+ 1 — & lt — kil + 2 - -}
w— i non 1142) I3

Therefore, the total addition/subtraction flops for elimination can be computed as
n—i a1

Y -kl —k =3 [nn+ D~ kQn+ 1)+ k) (8.16)

r=1 k=1
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or

-1 a1 -1

n{r:+1}2]—{2n+l]2k+ ZE (8.17)
=] k=1 k=]

Applying some of the relationships from Eq. (8.14) vields
4

[n* 4+ O]~ [n' + 0"+ %n-‘ + I_’}(n?‘}_ = HT 4+ On) (8.18)
A similar analysis for the multiplication/division fops vields

(' + 0" = [0 + 0] + _%n-‘ + O(n%_ = %3+ Qin’) (8.19)
Summing these results gives

ZTT;‘ + O’y (8.20)

Thus, the total number of flops is equal to 2n /3 plus an additional component pro-
portional to terms of order n® and lower. The result is written in this way because as n gets
large, the O(n*) and lower terms become negligible. We are therefore justified in conclud-
ing that for large n, the effort involved in forward elimination converges on 2n’ /3.

Because only a single loop is wsed. back substitution is much simpler to evaluate. The
number of addition/subtraction flops is equal to min — 1)/2. Because of the extra division
prior to the loop, the number of multiplication/division flops is n(n 4 11/2. These can be
added to arrive at a total of

i+ O (821

Thus, the total effort in naive Gawss elimination can be represented as

2-'??' a A 15 1 ANCreases 21”13 3
= 4 =y 4 one 4 O 5 + Oin~) (8.22)
Forward Back
elirnination substigution

Two useful general conclusions can be drawn from this analysis:

1. As the system gets larger. the computation time increases greatly. As in Table 8.1, the
amount of flops increases nearly three orders of magnitude for every order of magnitude
increase in the number of equations.

TABLE 8.1 Mumber of flops for naive Gouss elimination,

Back Total Percent Due
Elimination Substitution Flops 2'3 to Elimination
[0 S 100 ] =laly g5 00%
FE0 &l 550 10000 AE1550 [slslelale F8.53%

1000 dof =< 107 1w 108 H.68 x 10° H67 w 10F Q% B5%
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8.3

EXAMPLE 8.4

2. Most of the effort is incurred in the elimination step. Thus, efforts 10 make the method
more efficient should probably focus on this siep.

PIVOTING

The primary reason that the foregoing technique is called “naive™ 1s that during both the
climination and the back-substitution phases, it is possible that a division by zero can
occur, For example, if we use naive Gauss elimination to solve

Zxo 4+ 3x3= 8§
dxy 4 Oxg 4 Ty = =3
2y —3x34+6x3= 5

the normalization of the first row would involve division by ay = 0. Problems may also
arise when the pivol element is close, rather than exactly equal. 1o zero because if the mag-
nitude of the pivot element is small compared to the other elements, then round-off errors
can be introduced.

Therefore, before cach row is normalized. itis advantageous to determing the coefficient
with the largest absolute value in the column below the pivot element. The rows can then be
switched so that the largest element is the pivot element. This is called partial pivoting.

If columns as well as rows are searched for the largest element and then switched, the
procedure is called complete pivating, Complete pivoting is rarely used because switching
columns changes the order of the x's and, consequently, adds significant and usually un-
justified complexity to the computer program.

The following example illustrates the advantages of partial pivoting. Aside from
avoiding division by zero, pivoting also minimizes round-off error, As such, it also serves
as a partial remedy for ill-conditioning.

Partial Pivoting

Problem Statement.  Use Gauss elimination to solve
0.0003x; 4 3.0000x, = 2.0001
1.0000x; -+ 1.0000x; = 1.0000

Note that in this form the [irst pivot element. a,, = 0.0003, is very close to zero. Then re-
peat the computation, but partial pivot by reversing the order of the equations. The exact
solution 15 vy = 1/3 and x; = 2/3.
Solution.  Multiplying the first equation by 1,/{0.0003} yields

Xy 4 10,0000 = 6667
which can be used to eliminate x; from the second equation:

—~99909y, = —66606
which can be solved for vy = 2/3. This result can be substituted back into the first equa-
tion to evaloate xy:
20001 - 3(2/3)

- 4.
ol 0.0003 (E84.1)
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Due 1o subtractive cancellaton, the result is very sensitive 1o the number of significant
figures carried in the computation:

Absolute Value of

Significant Percent Relative
Figures - . Error for |
3 N Xsles 333 1093
4 aTsle 20,0000 10k
5 bt 330000 x
& [6las'sld ey 0.330000 |
7 0 SOaGH67 2.3330000 {,

Note how the solution for x, is highly dependent on the number of significant figures. This
is because in Eq. (E8.4. 1), we are subtracting two almost-equal numbers,

On the other hand, if the equations are solved in reverse order, the row with the larger
pivot element is normalized. The equations are

L0000, + 1.0000x; = 1.0000

(L0003 + 3.0000x0; = 2.0001

Elimination and substitation again yields x» = 2/3. For different numbers of significant
figures, x, can be computed from the first equation, as in
_ 1=/

X1
|

This case is much less sensitive to the number of significant figures in the computation:

Absolute Value of
Significant Percent Relative
Figures N N Error for |
3 SRt 0333 ol
4 05687 03333 0.0
] [0RaTslelVy (0.33333 Q.00
& (0Nt Te0d 0.333333 0.0001
7 D AGGHE0S 0.3333333 L0000

Thus. a pivot strategy 1s much more safisfactory.

8.3.1 MATLAB M-file: caussprivot

An M-file that implements Gauss elimination with partial pivoting is listed in Fig. 8.5. It
is identical to the M-file for naive Gauss elimination presented previously in Section 8.2.1
with the exception of the bold portion that implements partial pivoting.



| Chapra: Appliad Numerical | 8. Gauss Elimination Taxt 5 Tha MR-l
Methods with MATLAB for Campisnas, 2004
Engineers and Scientists

8.3 PIVOTING 155

function =% = GaussPivot (R, D)
% GanssPivor (A, bl
Gauss elimination without pivotbing.

input

& = rcoefficient matrix

b = right hand =2ide vector
cutpukb:

x = saluetion vechor

&P of of of @ dF

fm,n] = size (]
if m -= n, error!{'Matrix A must be square'); end
nb = n+k;
Al 1A b
% forward elimination
e k=]
% partial pivoting
{big,i] = max(abs(Aug(k:n.k)));
ipr = i+k-1;
if ipr ~= k
% pivot the rows
dugilk,iprl.:} = Auglfiipr.kl,:});
and
Fopd —kaln
factor = Augii.k}/Bugik,k};
augti k:nb) = Augili. k:nbhy-factor®*augfk . k:nb}:
end
end
% back subsititution
e e
#in] = Angln,nb} /Aug i, n);
Ewl e e e e
x(i) = {augii,nhl-Augli,i+ln)*x(i+ln} ) augiz,i);
end

FIGURE 8.5

An Midile to implement the Gauss elimination with partial phvating,

Notice how the built-in MATLAB function max is used to determine the largest
available coefficient in the column below the pivot element. The max function has the
syntax

fv,1] = maxi{x)

where v 1s the largest element in the vector =, and i is the index corresponding to that
element.
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8.4

TRIDIAGONAL SYSTEMS

Certain matrices have a particular structure that can be exploited to develop efficient solu-
tion schemes, For example, a banded matrix is a square matrix that has all elements equal
1o zero, with the exception of a band centered on the main diagonal.

Actridiagonal system has a bandwidth of 3 and can be expressed generally as

i T & ] ry
e f2 ;@ T ra
€3 fiom X3 3

= 1 (8.23)
€pt Suol EBao K1 Pl
— €n fﬂ - Xy L

Notice that we have changed our notation for the coefficients from a's and b's 10 e's, s,
2's, and r's. This was done to avoid storing large numbers of uscless zeros in the square ma-
trix of a's. This space-saving modification is advantageous because the resuliing algorithm
requires less compuier memaory,

An algorithm to solve such systems can be directly patterned after Gauss elimination—
that is, using forward climination and back substitution. However, becanse most of the
matrix ¢lements are already zero, much less effort is expended than for a full matrix, This
efficiency is illustrated in the following example,

EXAMPLE B.5 Solution of a Tridiagonal System

Problem Statement.  Solve the following tridiagonal system:

204 —1 X 40.8
-1 204 -1 x2l ] 08
-1 204 -1 x| ] 08

—1 2.04 Xa 40.8

Sclution.  As with Gauss elimination, the first step involves transforming the matrix to
upper triangular form. This is done by multiplying the first equation by the factor e:/f; and
subtracting the result from the second equation. This creates a zero in place of ¢; and trans-
forms the other coefficients to new values.

. . £ -

= o= =g = 2.4 — -1y = 1.550
=1 .fllgi 2.04( b
e 2 = 08— L (408) = 20.8
7= h 1= 0.8 — S (40.8) = 20,

Natice that g, is unmodified because the element above it in the first row is zero,
After performing a similar calculation for the third and fourth rows, the system is trans-
formed to the upper triangular form

204 -1 x 40.8
1550 1 ol ] 208
1395 —1 | a7 ) 14221

1323] Ly 210.996
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Now back substitution can be applied o generate the Tinal sofution:
X = % = % = 159.480
- rs _ffm _ 14.221 —1.[3;15}159.480 124538
= r —hggx_q _ 20,800 _| Fﬁ—jh}lm.if’-ﬁ — 93778
= " —fl:.gu:g _ 40,800 —2‘:};{:}93.?78 - 65.970

8.4.1 MATLAB M-file: Tridiag

An M-file that solves a midiagonal svstem of equations is listed in Fig. 8.6, Notwe that the
algorithm does not inclade partial pivoting, Although pivoting is sometimes required, most
tridiagonal systems routinely solved in engineering and science do not require pivoting,

FIGURE 8.6 _
An Mile to solve o ridicgonal syslem,

funcbion % = Tridiagie,.f,g,r)

¥ Tridiagle,f,g,r}:

3 Tridiagonal system solver.
% input:

% e = subdiagonal veckor

% f = diagonal wvectaor

% g = superdiagonal vector

% r = righr hand side vecrtor

% output:

% * = solukion vector

n = lengch(f}:

% forward elimination

Foy e
SR TR S e e
L T R i T
rik} = rik]l - Factortrik-11:

en
% bBack substitubion
s e s GO b

ek =a Lol
ikt = (ciki-giky*xdk+1}1/£(k};
end
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Recall that the computational effort for Gauss elimination was proportional to n’.
Because of its sparseness, the effort involved in solving tridiagonal systems is proportional
to n. Consequently, the algorithm in Fig. 8.6 executes much, much faster than Gauss elim-
ination, particularly for large systems.

PROBLEMS

8.1 Determine the number of total flops as a function of
the number of equations n for the tridiagonal algorithm
(Fig. &.61.

8.2 Use the graphical method to solve

dy) — Biy = —24
X+ b= 34
Check your results by swbstituting them back into the
gouations.
8.3 Given the system of eguations
~10xyp 4 My = 120
— 2y + 1 Tdra =174
{a} Solve graphically and check your results by substituting
them back into the equations.
{b) On the basis of the graphical solution. what do you expect
regarding the condition of the system?

{c) Compute the determinant.
8.4 Given the system of equations

s 3.1’2 b ?.1’3 =72
T 42— =3
SI] - 21’2 =2

{a) Compute the determinant.

{h) Use Cramer’s rale 1o solve for the x's,

{c) Use Gauss elimination with partial pivoting to solve for
the x's.

{d) Substitute your resufts back into the original equations
o check your solution.

8.5 MATLAB has a built-in function that computes the

determinant. It has the syntax,

d = det (&)

where d is the detenminant of the square matrix 7. Use this
function to compute the determinant for the svstems from
Probs. 8.3 and 8.4.
8.6 Given the equations

055 — x3=— 93

LOZyp = Qe = ~18.8

{a} Solve graphically,

{b) Compute the determinant.

{e) On the basis of (a) and (b). what would you expect
regarding the system's condition?

{d) Solve by the elimination of unknowns,

{e) Solve again, but with «,, modified slighty w 0.32.
Interpret your resulis.

8.7 Given the eguations

ey + 20y — xy= 27
~ 3y = Ox; + 2xy = —~61.5
X+ x4 Sxi= 213

{a) Solve by naive Gauss elimination. Show all steps of the
computation.

{(b) Substitute your results into the original equations to
check your answers,

8.8 Given the equations

'2.1'; — 6.1'2 — X3 = —38
=3 = n+Tn=-M
=81 + X3 = 2xz = -20

(a) Solve by Gauss elimination with partial pivoting, Show
all steps of the computation.

{b) Substitute your resubis into the original equations 1o
check your answers.

8.9 Perform the same calculations as in Example 8.5, but for

the widiagonal system:

08 —04 Xy 41
-4 08 D4 X3 p =4 23
~4 0.8 X3 105

810 Figure PEI0 shows three reactors linked by pipes. As in-
dicated, the rate of transfer of chemicals through each pipe is
equal o a flow rate (2, with units of cubic meters per second)
multiplied by the concentration of the reactor from which the
flow originates (o, with units of milligrams per cubic meter). If
the system is at a steady state, the tansfer into each reactor
will balance the wansler out. Develop mass-balance equations
for the reactors and solve the three simultaneous linear alge-
braic equations or their concentrations.
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400 [ r.=10 N
[
ru=4n§3 Q O O O cNT.-200
200 mgjs .
. X r,=10 3
it g.u : :gﬂ =10 x=10
01, =80
$2_%  FIGUREP8.12

FIGURE P8.10

Three reactors linked by pioes. The rafe of mass transter
through each pipe is equal to the product of flow - and
concentrafion - of the reactor fram which the Fow
ariginates.

A noninsuloted unitorm rod positioned befween hwo walls
of constant but different temperaiure. The fintedifference
representation employs four interor nodes.

811 A civil engineer involved In construction reguires
6000, 5000, and 8000 m* of sand, fine gravel, and coarse
sravel, respectively, for a building project. There are three
pits from which these materials can be obiained. The com-
position of these pits is

Sand Fine Gravel Coarse Gravel
% Yo Yo
Pitt 37 30 38
Par2 25 A 35
Fitd 35 15 50

How many cubic meters must be hanled from each pit in
order to meet the engineer’s needs?

8.12 Linear algebrae equations can arise in the solution of
differential equations, For example, the following differen-
tial equation derives from a heat balance for a long. thin rod
(Fig. P8.12):

5

T
+R(T, =Ty=0

3
X=

(PE.12.1)

where T = temperature ("Ch x = distance along the rod (m).
A" = a heat ransfer coefficient between the rod and the
ambient air (m™), and T, = the temperature of the sur-
rounding air {"C}. This equation can be transformed into a
set of linear algebraie equations by using o finite-divided-
difference approximation for the second derivative (recall
Section 4.3 34

EF_T_T}-.]—ET,-+E.|
dx? Ax?

where T} designates the temperature at node i, This approxi-
mation can be substituted into Eq. (P8 12.1) to give

T+ 2+ AXDT - T =K AT,

This equation can be written for each of the interior nodes of
the rod resulting in a tridiagonal system of equations. The
first and last nodes at the rods ends are fixed by boundary
conditions.

Develop a numerical solution for Eqg. (PR.I2. 1 fora H-m
rod with T = 20, Tix =0y =40, Ty = 10y = 200, and
R = 0,05, Use a finite-difference solution with four interior
nodes as shown in Fig, PE12 (Ax = 2m}.
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint yvou with LIS decomposition.
Specific objectives and topics covered are

*  Understanding that LI/ decomposition involves factoring the coefficient matrix
into two triangular matrices that can then be used to efficiently evaluate
different right-hand-side vectors,

*  Knowing how to express (Gauss elimination as an LI7 decomposition.

*  Given an LU decomposition, knowing how to evaluate multiple right-hand-
side vectors.

*  Recognizing that Cholesky’s method provides an efficient way to decompose a
symmetric matrix and that the resulting triangular matrix and its transpose can
be used to evaluate right-hand-side vectors efficiently.

*  Understanding in general terms what happens when MATLARB s backslash
operator 13 used to solve linear sysiems,

s described in Chap. 8, Gauss elimination is designed o solve systems of linear
algebraic equations:

[A]x - b 9.1}

Although it certainly represents a sound way to solve such systems, it becomes inefficient
when solving equations with the same coefficients [A], but with different right-hand-side
constants -

Recall thai Gauss elimination involves two steps: forward elimination and back sub-
stitucion (Fig. 8.3). As we learned in Section 8.2.2, the forward-elimination step comprises
the bulk of the computational effort. This is particularly true for large sysiems of equations,

160
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2.1

LU/ decomposition methods separate the nme-consuming elimination of the matrix [A]
from the manipulations of the right-hand side - 5. Thus, once [A] has been “decomposed,”
multiple right-hand-side vectors can be evaluated in an efficient manner,

Interestingly, Gauss elimination itself can be expressed as an LU decomposition.
Before showing how this can be done, let us first provide a mathematical overview of the
decomposition strategy,

OVERVIEW OF -- DECOMPOSITION

Just as was the case with Gauss elimination, LU decomposition requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (9.1) can be rearranged to give

[Alx - b - 0O (9.2

Suppose that Eq. (9.2) could be expressed as an upper triangular system. For example for
a3 3 system:

wy uiz w7 fa d)
0w w [ yx2yp e b (9.3}
0 0w X3 o

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
glimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (9.3) can also be expressed in matrix notation and rearranged to give

[U]x  d 0 (9.4)
Now assurme that there 15 a lower diagonal matrix with 17s on the diagonal,
1 0 0
[L]- |ih| I U} (9.5)
ly In 1

that has the property that when Eq. (9.4) is premultiplied by it, Eq. (9.2) is the result.
That is,

[L}[U}x  d- o [Alx - b (9.6)
If this equation holds, it follows from the rules for matrix multiplication that

L] [A] (9.7)
and

[L]d - b (9.8)

A two-step strategy (see Fig, 9.1) for obtaining solutions can be based on Egs. (9.3),
(9.7), and (9.8 )

1. Lif decomposition step. [A] is factored or “decomposed” into lower |L] and upper | £]
triangular matrices.
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9.2

{A] {x} =it}

{8 Decomposition ’4

wi Il

'

(L} (d} = {b}
SR

J’ ib} Forward
{d}
! # Substitution
Wl {x =}
'\—\_\_,_a'

4 {c) Back

{x}

FIGURE 9.1
The steps in + decompaosition,

2. Substitution step. [L] and [L/] are used to determine a solution - x- for a right-hand side
-#. This step itself consists of two steps. First. Eq. (9.8) is used to generate an interme-
diate vector - by forward substitution. Then, the result is substituted into Eq. (9.3)
which can be solved by hack substitution for - x-.

Now let us show how Ganss elimination can be implemented in this way.

GAUSS ELIMINATION AS - - DECOMPOSITION

Although it might appear at face value o be unrelated to LU decomposition, Gauss elimi-
nition can be vsed o decompose [A] into [L] and [£7]. This can be easily seen Tor [
which is a direct product of the forward elimination. Recall that the forward-climination
step is intended 0 reduce the original coefficient matrix [A] 10 the form

tyy  dpz diy

[ | 0 aym ay (9.9)
] 0 ay

which is in the desired upper triangular format.
Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily tllustrated for a three-equation system,

apy oo X B
ay dp dn [{X2 gy 3o
dyp Az dy X3 Iy
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EXAMPLE 9.1

|

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (8.9)]

. 53]
fa =
dyy
and subtract the result from the second row to eliminate a,,. Similarly. row 1 is multi-
plied by
day

fa - =

iy

and the result subtracted from the third row o eliminate ;. The final step is o multiply
the modified second row by

. a
fr- 2
4xn

and subtract the result from the third row to eliminate ...

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side - . But there is ahsolutely no reason that we have to perform the manipulations
simultaneously, Thus, we could save the s and manipulate - & later,

Where do we store the factors . f;,. and f;,? Recall that the whole idea behind the
elimination was to create Zeros In . dyy. and ¢4, Thus, we can store 5| ina,,. fi) Inay,
and f3, in a5, After elimination, the [A] matrix can therefore be written as

LS L

I owsn Ay (9.10)
S fnoay
This matrix. in fact, represents an efficient storage of the LI/ decomposition of [A4],
tAl- LIV (911}
where
dip iz A3
[{-'F} - {] ugz ﬂz:; t9.12}
0 0 ay
and
| 0 0
[£1- [.fy 1 G] (9.13)
NI S 3

The following example confirms that [A] - [L][L].

Decomposition with Gauss Elimination

Problem Statement.  Derive an LU decomposition based on the Gauss elimination per-
formed previously in Example 8.3,
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Solution.  In Example 8.3, we used Gauss elimination 1o solve a set of linear algebraic
equations that had the following coeflicient matrix:

[A]- | 0.1 7 03

r3 -0l 02
L03 - 02 10 :I

After forward elimination, the following upper triangular matrix was obtained:

r3 ol - 0.2
(L) |0 7.00333 - 0.293333}
L0 o 10.0120

The factors employed o obtain the upper tangular matrix can be assembled into a lower
triangular matrix, The elements az) and a5 were eliminated by using the factors

0.1 0.3

and the element a5 was eliminated by using the factor

- 0.19

- - 002713
700333 0.0271300

fa
Thus, the lower triangular matrix 1s

1 0 0
[L]: [0.0333333 1 D}

0100000 - 00271300 1
Consequently, the LU decomposition is

1 0 0 3 0l - 0.2
(4] [LU]- [G.0333333 I Di| [D 700333 - 0.293333}
0100000 - 00271300 1 0 0 10,0120

This result can be verified by performing the muoltiplication of [L][L] to give

3 01 0.2
[LIY- I:G.G’S'QQQS'Q T - 0.3 i|
0.3 - 0.2 9.99996

where the minor discrepancies are due 1o round-ofT.

After the matrix is decomposed. a solution can be generated for a particular right-
hand-side vector -b-. This is done in two steps. First, a forward-substitution step is exe-
cuted by solving Eq. (9.8) for - . It is important o recognize that this merely amounts to
performing the elimination manipulations on -b-. Thus, at the end of this step, the right-
hand side will be in the same state that it would have been had we performed forward
manipulation on [A] and -/ simultaneously.
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The forward-substitution step can be represented concisely as
i
di- bi- Y Iyb;  fori- 1.2....n
il
The second step then merely amounts o implementing back substitution o solve
Eq. (9.3}, Again, it is important to recognize that this is identical to the back-substitution
phase of conventional Gauss elimination [compare with Egs. (8.12) and (8.13)]:
Xy drr.-'ra.lnl
di - X
X st fori- n- lm 2,....1
iig
EXAMPLE 2.2 The Substitution Steps

Problem Statement. Complete the problem initiated in Example 9.1 by generating the
final solution with forward and back substitution.

Solution.  As just stated, the intent of forward substitution is to impose the elimination
manipulations that we had formerly applied to [4] on the right-hand-side vector - b-. Recall
that the system being solved is

3 - 01 - 02 X T7.85
o1 7 m“} { 19.3}
L0302 10 X3 714

and that the forward-elimination phase of conventional Gauss elimination resulted in

T3 0 - 0.2 X 7.85
0 7.00333 - 6.293333} {x;r } : { 19.561?}
L0 0 10,0120 X3 70.0843
The forward-substitution phase 1s implemented by applying Eq. (9.8):
I 0 0714 7.85
|:ﬁ.i}333333 1 D} [dz } : { : 19.3}
0100000 - 0.0271300 1 dy T4

or multiplying out the left-hand side:

ey : 7.85
0.0333333, - i - 19,3
0.100000d4; - 0.0271300ds . oy 714

We can solve the first equation for o, - 7.85, which can be substituted into the second

equation to solve for
dy - - 193 0.0333333(7.85) - - 19.5617
Both o, and o, can be substituted into the third equation to give

dy - TL4A- O 1785 002713 19.5617) - T70.0843
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Thus,
T.85
d- - { - 19,5617 }
T0.0843

EXAMPLE 9.3

This result can then be substituted into Eq. (9.3), [/ ] x- - -d-:

- 0.2 Xy T.85
- 0.293333:| {.rg } : { - 19,561?}
10,0120 X3

T0.0843
which can be solved by back substitution {see Example 8.3 for details) for the final solution:

3
@ { 25 }
7.00003

30l
|:[} 7.00333
0 0

The LIJ decomposition algorithm requires the same total flops as for Ganss elimina-
tion. The only difference is that a little less effort is expended in the decomposition phase
since the operations are not applied to the right-hand side. Conversely. the substitution
phase takes a little more effort.

9.2.1 MATLAB Function:

MATLAB has a built-in function 1u that generates the LI/ decomposition. It has the gen-
eral syntax:

['i': =

where - and - are the lower triangular and upper triangular matrices, respectively, derived
from the LI7 decomposition of the matrix - . Note that this function uses partial pivoting to
avold division by zero. The following example shows how it can be employed to generate
both the decomposition and a solution for the same problem that was solved in Exam-
ples 9.1 and 9.2.

Tuadl- |

Decomposition with MATLAB

Problem Statement.  Use MATLAB to compute the LU decomposition and find the
sofution for the same lincar system analyzed in Examples 9.1 and 9.2

o000 027w 7.85
{U‘.I 7 -0.3}{,1'3}- { 19.3}
a3 - 02 10 Xy

714
Selution.  The coefficient matrix and the right-hand-side vector can be entered in stan-
dard fashion as

=2 A o= [3 -0 -0Z2;01 007 -.3;03 .2 101

[7.85; -13.3; 71.41;
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Next, the LU decomposition can be computed with

== [L,U] = IailA)
I, =
1.0000 G &
0.0333 1, 0006 G
0.1000 -0, 0271 1.0000
il =
3.0000 -0 1000 -0.200C
[N TLO0033 -0, 2933
} G 10,0120

This is the same result that we obtained by hand in Example 9.1. We can test that it is cor-
rect by computing the original matrix as
== Ll
ang =
3.0000C -0.1000 -0.2000
01000 T.0000 -0, 3000
0.3000 -0.2000 10,0000
To generate the solution, we first compute

= d = Livb

A0S

joR
|

T.8800
-158.,56L17
T0.0843

And then use this result to compute the solution
== o o= g
o=

3.0000
-2.5000
TL0000

These results conform to those obtained by hand in Example 9.2.

9.3 CHOLESKY DECOMPOSITION

Recall from Chap. 7 that a symmetric matrix is one where a;; - ay; forall § and j. In other
words, [A] - [A}". Such systems occur commonly in both mathematical and engineering/
science problem contexts.

Special solution techniques are available for such systems. They offer computational
advantages because only half the storage is needed and only half the computation time is
required for their solution.
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EXAMPLE 9.4

One of the most popular approaches involves Cholesky decomposition (also called
Cholesky factorization). This algorithm is based on the fact that a symmetric matrix can be
decomposed, as in

[A1- w1 (9.14)

That is. the resulting triangular factors are the transpose of each other.
The terms of Eq. (9.14) can be multiplied out and set equal to each other. The decom-
position can be generated efficiently by recurrence relations. For the ith row:

il
1 @y u, (9.15)
Lol
i1
dij - ¥ Wil
i L forj- i 1,....¢ (9160

iy

Cholesky Decomposition

Problem Statement.  Compute the Cholesky decomposition for the symmetric matrix
6 15 35
[A]- l:i.'i 55 225]
55 225 979
Solution.  For the first row (i - 1), Eq. (9.15) is employed 1o compute
Wy @ 60 244949

Then, Eq. (9.16) can be used to determine

. 2 1 6.123724

Bown 244949 T
55

P 22.45366

wn 244940

For the second row (i - 2k

- Jan o owly o /55 (61237247 41833

upy G2ty 233 612000 4 6,45
= 4.1833

For the third row (f - 3):

uzs o fam o owiy o udy o /979 (22.45366)° - (20.9165) - 6.110101
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Thus, the Cholesky decomposition yields
244049 6123724 22 45366
- |: 41833 20,9165 }
6110101

The validity of this decomposition can be verified by substituting it and its transpose
inte Eq. (9. 14) 1w see if their product vields the original matrix {A]. This is lefi for an exercise.

After oblaining the decomposition. it can be used to determine a solution for a right-
hand-side vector - £ in a manner similar to LU decomposition. First, an intermediate vec-
tor -« s created by solving

i d - b (9.17)
Then, the final solution can be obtained by solving

(U)x - -d (915}
9.3.1 MATLAB Function:
MATLAB has a built-in function chol that generates the Cholesky decomposition. It has
the general syntax,

= chaol{ ]
where - is an upper riangolar matrix so that -+ = -, The following example shows how
it can be employed w generate both the decomposition and a solution for the same matrix
that we looked at in the previous example,
EXAMPLE 9.5 Cholesky Decompesition with MATLAB

Problem Statement. Use MATLAB to compute the Cholesky decomposition for the
same matrix we analyzed in Example 9.4,

6 15 55
(Al |: 15 35 225}
55 225 979

Also obtain a solution for a right-hand-side vector that is the sum of the rows of [A]. Note
that for this case, the answer will be a vector of ones.,

Solution.  The matrix is entered in standard fashion as
== B = [6 15 85; 15 55 225; 55 225 979];
A right-hand-side vector that is the sum of the rows of [A] can be generated as

=2 b= [sumf{A(l,:)); sumiA(2, 1k sumi{d{(3,:1]]
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Nexi, the Cholesky decomposition can be computed with

»» 11 = chol(al

'L'_
2.449%5 £.1237 22,4537
a 4.1832 20G.5165
] 0 £.1101

We can test that this is correct by computing the original matrix as

== 1T F]

ans =
&.0000 L=, 0000 55.0000
15,0000 5. 0000 2250000
55.0000 L0000 97900040

To generate the solution, we first compute
==l = Ak

d =
n

=41

‘

3
2

oo
bt
= R ]
| = Y )

oo

And then use this result to compute the solution

== 3 o= ALY

b —-—
1.0000
1.0000
1.0000

9.4 MATLAB LEFT DIVISION

We previously introduced feft division without any explanation of how it works, Now that
we have some background on matrix solution technigues, we can provide a simplificd
description of iis operation,

When we implement left division with the backslash operator, MATLAB invokes a
highlv sophisticated algorithm to obtain a solution. In essence, MATLAB examines the
structure of the coefficient matrix and then implements an optimal method to obtain the
sofution. Although the details of the algorithm are bevond our scope, a simplified overview
can be outlined,

First, MATLAB checks 10 see whether [A] is in a formar where a solution can be
obtained without full Gauss climination, These include systems that are {a) sparse and
banded. (b} triangular (or easily ransformed into triangular form), or (¢} symmetric, If any
of these cases are detected, the solution is obtained with the efficient techniques that are
available for such sysiems. Some of the wchniques include banded solvers, back and for-
ward substitution, and Cholesky decomposition.
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If none of these simplified solutions are possible and the matrix is square,' a general
triangular factorization 1s computed by Gauoss elimination with partial pivoting and the

solution obtained with substitution.

I shoabd be noded that isthe event that [A] 3s nol square, 3 leasi-squares solution is oblained with an approach

called QR factorization,

PROBLEMS

9.1 Determine the total flops as a function of the number of
equations n for the (a) decomposition, (b) forward substilu-
tion, and (¢} back substitution phases of the LU decomposi-
tion version of Gauss climination,

9.2 Use the rules of matrix multiplication w prove that
Eqgs. (9.7 and (9.8) follow from Eg. (9.6).

9.3 Use naive Gauss elimination to decompose the follow-
ing system according to the description in Section 9.2

Iy - 2xa- xa - 27
: 3.1'|- Gx;- 21.'3' - 6l3
¥poo Xa- Sxs- - 215

Then, multiply the resulting [L] and [£7] matrices to deter-
mine that [4] is produced.

9.4 Use LU decomposition to solve the system of equations
in Prob. 9.3, Show all the steps in the computation. Also
sofve the system for an alternative right-hand-side vector

LA b |

9.5 Bolve the following system of equations using LU de-
compaosition with partial pivoting:

11.'] . (l}:'2 R & 38
S Axyp- o oxae Tay e - Ad
: 3.1'| - Xz 2!3 o220

9.6 Develop your own M-file to determine the LI/ decompo-
sition of a square matrix without partial pivoting. That is, de-
velop a function that is passed the square matrix and returns
the trianzular matrices [L] and [, Test your function by
using it to solve the system in Prob. ©.3. Confirm that your
function is working properly by verifying that [L1[L7] - [A]
and by using the buift-in function 1u.

9.7 Confirm the validity of the Cholesky decomposition of
Example 2.4 by substituting the results into Eq. (9.14) o
verify that the product of (07" and [17] yields [A].

9.8 {a) Perform a Cholesky decomposition of the following
symmetric system by hand:

5 20 15 X 50
20 BO 50 X1 250
15 50 60 X3 1

(b} Verify your hand calculation with the built-in chol
function. (e} Employ the results of the decomposition [U] to
determine the solution for the righi-hand-side vector,

9.9 Develop your own M-file to determine the Cholesky de-
composition of a symmetric matrix without pivoting. That
i5, develop a function that is passed the symmetric matrix
and retwrns the matrix [{/]. Test your function by using it to
solve the system in Prob. 9.8 and use the built-in function
crel to confirm that your function is working properly.
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Matrix Inverse and Condition

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to show how to compute the matrix inverse
and to illustrate how it can be used to analyze complex linear systems that occur in
engineering and science. In addition, a method to assess a matrix solution’s
sensitivity to round-off error is described. Specific ohjectives and topics covered are

*  Knowing how to determine the matrix inverse in an efficient manner based on
LU/ decomposition.

*  Understanding how the matrix inverse can be used to assess stimulus-response
characteristics of engineering systems,

*  Understanding the meaning of matrix and vector norms and how they are computed.

*  Knowing how to use norms to compute the matrix condition number.

*  Understanding how the magnitude of the condition number can be used to
estimate the precision of solutions of linear algebraic equations.

10.1 THE MATRIX INVERSE

In our discussion of matrix operations (Section 7.2.2). we introduced the notion that if a
matrix [A] is square. there is another matrix [A] !, called the inverse of [A]. for which

[ANAT ' (AT '1A]- 1] (10.1)

Now we will focus on how the inverse can be computed numerically. Then we will explore
how it can be used for engineering analysis.

10.1.1 Calculating the Inverse

The inverse can be computed in a column-by-column fashion by generating solutions with
unit vectors as the right-hand-side constants. For example, if the right-hand-side constant
172
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has a 1 in the first position and zeros elsewhere,
1
b 10 (10.2)
{]
the resulting solution will be the first column of the matrix inverse. Similarly, if a unit vec-
tor with a I at the second row is used
0
e i (10.3)
0
the result will be the second column of the matrix inverse.
The best way to implement such a caleulation is with LU decomposition. Recall that
one of the great strengths of LU decomposition is that it provides a very efficient means o
evaluate multiple right-hand-side vectors. Thus. it is ideal for evalvating the multiple unit
vectors needed to compute the inverse,
EXAMPLE 10.1  Malrix Inversion

Problem Statement,  Employ LU decomposition to determine the matrix inverse for the
system from Example 9.1:

301 02
[Al- jor 7 .03
03 -02 10
Recall that the decomposition resulted in the following lower and upper triangular matrices:
30 -0 - 0.2 1 0 0
(L} | 0 7.00333 - 0.293333 (L] | 0.0333333 | 0
0 0 10,0120 0L100000 - 00271300 1

Solution. The first column of the matrix inverse can be determined by performing the
forward-substitution solution procedure with a unit vector (with 1 in the first row} as the
right-hand-side vector, Thus, the lower tnanguolar system can be setup as (recall Eg. [9.8])

| 0 0 dy |
0.0333333 1 1] dr § - ]
100000 - 0.0271300 | i ]

and solved with forward substitution for -d-' - -1 - 0.03333 - 0.1009- . This vector
can then be used as the right-hand side of the upper triangular system {recall Eq. [Y.3]):

3 0.1 02 X 1
0 7.00333 . 0.293333 X1 ¢ - 0.03333
0 ] 10,0820 X3 - L1009

which can be solved by back substitution for - x-7 - -0.33249 - 0.00518 - 0.01008-,
which is the first column of the matrix inverse:

033249 0 0
[AT ' |- 000518 0 0
001008 0 0
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To determine the second column, Eg. (9.8) 1s formulated as

1 0 01 d 0
0.0333333 I O1ydg- I
0100000 - 00271300 1 i3 0

This can be solved for -, and the results are used with Eq. (9.3) to determine -x-7 -
AR004544  (0.142903  0.00271-, which is the second column of the matrix inverse:

0.33249 0.004944 0
(A1 |- 0.00518 0142903 0
001008 0.002710 0

Finally, the same procedures can be implemented with 5" - -0 0 [ 1o solve for
-t 0006798 0.004183  0.09988- . which is the final column of the matrix inverse:

0.33249  0.004944  0.006798
(AT ' | 000518 0.142903 0.004183
S 001008 0.002710  0.099880

The validity of this result can be checked by verifving that [A][A] ' [7].

10.1.2 Stimulus-Response Computations

As discussed in Section 7.1.1, many of the linear systems of equations arising in engineer-
ing and science are derived from conservation laws. The mathematical expression of these
laws is some form of balance equation to ensure that a particular property—mass, force,
heat. momentum, electrostatic potential—is conserved. For a force balance on a structure,
the properties might be horizontal or vertical components of the forces acting on each node
of the structure. For a mass balance, the properties might be the mass in each reactor of a
chemical process. Other fields of engineering and science would yield similar examples.

A single balance equation can be written for each part of the system, resulting in a set
of equations defining the behavior of the property for the entire system. These equations
are interrelated. or coupled. in that each equation may include one or more of the variables
from the other equations. For many cases, these systems are linear and, therefore. of the
exact form dealt with in this chapter:

(A} x - b (10.4)

Now, for balance equations. the terms of Eq. (10.4) have a definite physical interpre-
tation. For example, the elements of - x are the levels of the property being balanced for
each part of the system. In a force balance of a structure, they represent the horizontal and
vertical forces in each member. For the mass balance. they are the mass of chemical in each
reactor. In either case, they represent the system’s stare or response, which we are trying to
determine.

The right-hand-side vector - b contains those elements of the halance that are inde-
pendent of behavior of the system—that is, they are constants. In many problems, they
represent the forcing functions or external stimudi that drive the system.
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EXAMPLE 10.2

Finally, the matrix of coefficients [A] usually contains the parameters that express
how the parts of the system inferact or are coupled. Consequently, Eq. (10.4) might be
reexpressed as

[Interactions} response - stmuli-

As we know from previous chapters, there are a variety of ways to solve Eq. (10.4)
However, using the matrix inverse yields a particularly interesting result. The formal solu-
tion can be expressed as

x [AT Vb
or (recalling our definition of matrix multiplication from Section 7.2.2)
xpooap'h apb ah
Yoo dy'bidapby ay'bs
Xy ooay'hy o ayp'hr ay'h

Thus, we find that the inverted matrix itself, aside from providing a solution, has ex-
tremely useful properties. That is, each of its elements represents the response of a single
part of the system to a unit stimulus of any other part of the system.

Notice that these formulations are linear and. therefore, superposition and propottion-
ality hold. Superposition means that if a system is subject to several different stimuli (the
f's), the responses can be computed individually and the results summed to obtain a rotal
response. Proportionality means that multiplying the stimuli by a quantity resulis in the re-
sponse Lo those stimuli being multiplied by the same quantity. Thus, the coefficienta,,' is
a proportionality constant that gives the value of xy due o a unit level of by, This result is
independent of the effects of by and 7 on 1. which are reflected in the coefficients
a,, and a4 . respectively. Therefore. we can draw the general conclusion that the element
“u] of the inverted matrix represents the value of x, due to a unit quantity of b,

Using the example of the structure, element a; J-' of the matrix inverse would represent
the force in member ¢ due to a unit external force at node . Even for small systems, such
behavior of individual stimulus-response interactions would not be intuitively obvious, As
such, the matrix inverse provides a powerful technigue for understanding the interrelation-
ships of component parts of complicared systems.

Analyzing the Bungee Jumper Problem

Problem Statement. At the beginning of Chap. 7. we set up a problem involving three
individuals suspended vertically connected by bungee cords. We derived a system of linear
algebraic equations based on force balances for each jumper,

150 100 0 Xy 5886
100 150 - 50 X2 (- 6867
0 - 50 50 X3 848

In Example 7.2, we used MATLAB to solve this system for the vertical positions of the
jumpers {the x's). In the present example, use MATLARB to compute the matrix inverse and
interpret what it means.
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Solution.  Start up MATLAB and enter the coefficient matrix:
== B o= [150 -100 0;-100G 150 -50;0 -530 501,

The inverse can then be computed as

== KI = invik)

EI =
G.0200 0L 0200 G.0200
¢.0200 GL 0300 C.0300
G, 0200 ¢.0300 . 0500

Each element of the inverse, &, j] of the inverted matrix represents the vertical change
in position (in meters) of jumper § due 0 a unit change in force (in Newtons) applicd to
Jumper j.

First, observe that the numbers in the first column (j - 1) indicate that the position of
all three jumpers would increase by 0,02 m il the foree on the first jumper was increased
by 1 N. This makes sense, becavse the additional force would only elongate the first cord
by that amount.

In contrast, the numbers in the second column (f - 2) indicate that applying a force
of I N tothe second jumper would move the first jumper down by 0.02 m. but the second
and third by 0.03 m. The 0.02-m elongation of the first jumper makes sense because the
first cord is subject to an extra 1 N regardless of whether the Torce 1s applied to the first or
second jumper, However, for the second jumper the clongation 1s now 0.03 m because
along with the first cord, the second cord also elongates due to the additional force. And of
course, the third jumper shows the identical translation as the second jumper as there 1s no
additional force on the third cord that connects them.

As expected, the third colummn (j - 3} indicates that applying a force of 1 N 1o the
third jumper results in the first and second jumpers moving the same distances as occurred
when the force was apphied to the second jumper, However, now because of the additional
elongation of the third cord, the third jumper is moved farther downward.

Superposition and proportionality can be demonstrated by using the inverse o deter-
mine how much Farther the third jumper would move downward il additional forces of 140,
50, and 20 N were applied to the first, second, and third jumpers, respectively. This can be
done simply by using the appropriate ¢lements of the third row of the mverse to compute,

Axy o ki AF - Ky AR ki AFy 0 0L02010) - 0.03(50) - 0.05(20) 0 2.7 m

10.2

ERROR ANALYSIS AND SYSTEM CONDITION

Aside from its engineering and scientific applications, the inverse also provides a means to
discern whether systems are ill-conditioned. Three direct methods can be devised for this

purpose:
1. Scale the matrix of coefficients [A] so that the largest element in each row is 1. Invert

the scaled matrix and if there are elements of [A] 7 that are several orders of magnitude
greater than one, it is likely that the system is ill-conditioned,
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2. Multiply the inverse by the original coefficient matrix and assess whether the result is
close to the identity matrix. I not, it indicates ill-conditioning,

3. Invert the inverted matrix and assess whether the result is sufficiently close to the orig-
inal coefficient matrix, If not, it again indicates that the system is ill-conditioned.

Although these methods can indicate ill-conditioning. it would be preferable o obtain
a single number that could serve as an indicator of the problem. Attempts to formulate such
a matrix condition number are based on the mathematical concept of the norm.

10.2.1 Vector and Matrix Norms

A norm is a real-valued function that provides a measure of the size or "length” of multi-
component mathematical entities such as vectors and matrices.

A simple example is a vector in three-dimensional Euclidean space (Fig. 10.1) that can
be represented as

Fea b

where a, b, and ¢ are the distances along the x, v, and z axes. respectively. The length of
this vector—that is, the distance from the coordinate (0, 0, 0) to {a. b, ¢}—can be simply
computed as

F, - Jat B &2

where the nomenclature - £, indicates that this length is referred to as the Enclidean norm

of [F].

FIGURE 10.1
Grcphic{,}? d{-:picrion of a vector in Foclicean SDOCE

3
b=
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Similarly, for an n-dimensional vector- X- - - x; x2 - X, . 4 Buclidean norm

would be computed as

n
.2
X . Xx;
'\‘ il
The concept can be extended further to a matrix [A], as in

n [l

"'d"r . ZE“‘Z‘-J {15}
VR
which is given a special name—the Frobenins norm. As with the other vector norms, it
provides a single value to quantify the “size™ of [A].

It should be noted that there are alternatives to the Euclidean and Frobenius norms. For
vectors, there are alternatives called p norms that can be represented generally by

" L

We can see that the Euclidean norm and the 2 norm, - X 5, are identical for vectors.
Other important examples are (p - [}

il
X Z._‘-r_.
il
which represents the norm as the sum of the absolute values of the elements. Another is the
maximum-magnitude or uniform-vector norm (p - - 1,
-X- - max -x-
bin

which defines the norm as the element with the largest absolute value.
Using a similar approach. norms can be developed for matrices. For example,

il
~A o max E “dij
R

That is. a summation of the absolute values of the coefficients is performed for each col-
ummn, and the largest of these summations is taken as the norm. This is called the colimn-
S ROTm.

A similar determination can be made for the rows, resulting in a uniforn-matrix or
FEHW-SHET O

"
A max Z-n -
1. J'!j_ | i

It should be noted that, in contrast to vectors, the 2 norm and the Evelidean norm for
a matrix are not the same. Whereas the Euclidean norm - A, can be easily determined by
Eq. (10.5), the matrix 2 norm - A- , is calculated as

“A g {ﬂzmlxluz
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where 1, is the largest eigenvalue of [A]'[A]. In a later chapter, we will learn more about
eigenvalues. For the time being, the important point is that the - A- 5, or spectral norm, is
the minimum norm and. therefore, provides the tightest measure of size {Ortega, 1972).

10.2.2 Matrix Condition Number
Now that we have introduced the concept of the norm. we can use it to define
Cond[A]- - A - AL

where Cond|A] is called the marrix condition number, Note that for a matrix [A]. this
number will be greater than or equal to 1. It can be shown (Ralston and Rabinowitz, 1978;
Gerald and Wheatley, 1989) that

AKX CAA
~ Cond[A]—— T

That is. the relative error of the norm of the computed solution can be as large as the rela-
tive error of the norm of the coefficients of [A] multiplied by the condition number. For ex-
ample, if the coefficients of [A] are known to f-digit precision (i.e.. rounding errors are on
the order of 10 ') and Cond[A] - 107, the solution [X] may be valid to only r - ¢ digits
{rounding errors - 107 1),

EXAMPLE 10.3  Matrix Condition Evaluation

Problem Statement.  The Hilbert matrix, which is notoriously ill-conditioned, can be repre-
sented generally as

1

u
1
i1

Bt — =
cew— b —
e B

1

2n- 1

Use the row-sum norm to estirmate the matrix condition number for the 3- 3 Hilbert matrix:

(Al

ad] = b —
P L
R N e

Solution.  First. the matrix can be normalized so that the maximum element in each row is 1;
i

1ol
T 3
2
(Al- |1 5 3
301
L1 s

Summing each of the rows gives [.833, 2.1667, and 2.35. Thus, the third row has the
largest sum and the row-sum norm is
3 3

AL S D235
A1
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EXAMPLE 10.4

The inverse of the scaled matrix can be compuied as

9 18 10
A1 |36 96 .60
30090 60

Note that the elements of this matrix are larger than the original matrix, This is also re-
flected in its row-sum norm, which is computed as

AL 36 96 60 - 192
Thus, the condition number can be calculated as

Cond[A] - 2.350192) - 451.2

The fact that the condition number is much greater than unity suggests that the system
is ill-conditioned. The extent of the ill-conditioning can be quantified by calculating ¢ - log
451.2 - 2.65. Hence, the last three significant digits of the solution could exhibit rounding

errors, Note that such estimates almost always overpredict the actual error. However, they
are useful in alerting you to the possibility that round-off errors may be significant,

10.2.3 Norms and Condition Number in MATLAB

MATLAB has built-in functions to compute both norms and condition numbers:
== onormis )

and

»x ocondie -0

where - is the vector or matrix and - designates the type of norm or condition number (1,
Z, inf, or ' frot ) Note that the cond function is equivalent to

»» normi- ,- ) * norm{invi b, )

Also, note that if - is omitted, it is automatically set to 2.

Matrix Condition Evaluation with MATLAB

Froblem Statement. Use MATLAB to evaluate both the norms and condition numbers
for the scaled Hilbert matrix previously analyzed in Example 10.3:

1
[A]- ]
1

N I R
L1 RV ST PR P

{er) As in Example 1003, first compute the row-sum versions (- - inf) (b) Also compute
the Frobenius (- - 2o )and the speetral (- - 2) condition numbers,

Solution: () First, enter the matrix:

=» A o= [L 172 1/73;1 273 1/72;:1 2/4 3/5];
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== normia, inf)

ans =

»e condld, ing)

ans =
4512000

== condid, ‘fro'l

arfs =

368, 0868
== Ccond (Al

all

Then, the row-sum norm and condition number can be computed as

These results correspond to those that were calculated by hand in Example 10.3.

(£ The condition number based on the Frobenius and spectral norms are

PROBLEMS

10,1 Determine the matrix inverse for the following system:

Wxy - 2x- x- 27
. 3.1']' ﬁx;- 2x; - - 6L
LI ) 1 |

[

Check your results by verifying that [A][A] Lo Donot
use a pivoting strategy.

1.2 Determine the matrix inverse for the following system:
: 8.\’] EE v 2.1.‘3- - 2

2yy- Bz xze - 38
C3xy s ke Txse - 3

10.3 The following system of equations is designed to de-
termine concentrations (the ¢'s in g)’m"'] in a series of cou-
pled reactors as a function of the amount of mass input o
each reactor (the right-hand sides in 2fday):

E5cy - 3oz 3 3800
. 3{-| . ]_ng- 6{'] - 1200
. 4{_—I . [N |2(.‘g - 235{]

(a) Determine the matrix inverse.
() Use the inverse to determine the solution,

{c) Determine how much the rate of mass input to reactor 3
must be increased to induce a 10 g/m’ rise in the con-
centration of reactor |,

(e} How much will the concentration in reactor 3 be re-
duced if the rate of mass input to reactors 1 and 2 is
reduced by 500 and 250 gfday, respectively?

104 Determine the matrix inverse for the system described

in Prob, 7.6, Use the mairix inverse to determine the con-

centration in reactor 5 il the inflow concentrations are

changed to oy - 20 and ey - 500

10.5 Determine the matrix inverse for the system described

in Prob, 7.7. Use the matrix inverse 1o determine the force in

the thres members (F), P oand F3) i the vertical load a

node | is doubled to Fy - - 2000 1b and a horizontal load

of Fyp - - 500 1b1s applied to node 3.

1.6 Determine- A- .- A, and - A for

& 2 10
[Al- |- 9 1 3
i5 -1 6

Before determining the norms, scale the matrix by making
the maximum element in each row equal 1o one,
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16,7 Determine the Frobenius and row-sum norms for the
systenas in Probs, 1002 and 10.3.
1.8 Use MATLAB to determine the spectral condition num-

ber for the following system. Do not normalize the system:

1 4 9 18 I5
4 9 18 25 36
9 16 25 3o 49
6 25 30 49 o4
25 36 49 o4 8l

Compute the condition number based on the row-sum norm.
189 Besides the Hilbert matrix, there are other matrices
that are inherently ill-conditioned. One such case is the
Vandermonde marrix, which has the following form:

.J:f LT |
xi X2 1

5

x3 x|

{a} Determine the condition number based on the row-sum
norm for the case where xy - 4, x50 - 2o andxa - T
(b) Use MATLAB to compute the spectral and Frobenius
condition numbers,
10,10 Use MATLAB to determine the spectral condition
number fora 10-dimensional Hilbert mateix, How many dig-
its of precision are expected o be lost due to ill-conditioning?
Dretermine the solution for this system for the case where cach
element of the right-hand-side vector - b consists of the sum-
mation of the coefficients i its row. In other words, solve for
the case where all the unknowns should be exactly one. Com-
pare the resulting errors with those expected based on the
condition number,
1L Repeat Prob. HELO. but for the case o a six-
dimensional Vandermonde matrix (see Prob, 10.9) where
4,1 Toxg - W 3 andx, - 5.

RS 2.13-
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of Equations

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acguaint you with iterative methods for
solving simultaneous equations. Specific objectives and topics covered are

Understanding the difference between the Gauss-Seidel and Jacobi methods,
Knowing how to assess diagonal dominance and knowing what it means.
Recognizing how relaxation can be used to improve the convergence of
iterative methods.

*  Understanding how to solve systems of nonlinear equations with successive
substitution and Newton-Raphson.

terative or approximate methods provide an alternative to the elimination methods

described to this point. Such approaches are similar to the techniques we developed to

obtain the roots of a single equation in Chaps. 5 and 6. Those approaches consisted of
guessing a value and then using a systematic method to obtain a refined estimate of the
root. Because the present part of the book deals with a similar problem—aobtaining the val-
ues that simultaneously satisty a set of equations—we might suspect that such approximate
methods could be usetul in this context. In this chapter, we will present approaches for
solving both linear and nonlinear simultaneous equations,

11.1 LINEAR SYSTEMS: GAUSS-SEIDEL
The Gauss-Seide! method is the most commonly used iterative method for solving linear
algebraic equations. Assume that we are given a set of n equations:
[Allx] = {b]

Suppose that for conciseness we limit ourselves to a 3 = 3 set of equations. 1f the diagonal
glements are afl nonzero, the first equation can be solved for xy. the second for x.. and the

183
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third for vy to yield

i1 i1
i h; - Cfpl‘"l — 3.0
X = =2 G (11.1a)
g
i i—1
b] - E,h;_'l’"l = Lh':._lJ
Xy = — (11.1b)
(L
j by — (tl.;,'r"i —mng
o=l e (11.1¢)
' ds3

where jand j — 1 are the present and previous iterations,

To start the solution process, initial guesses must be made for the «'s, A simple ap-
proach is o assume that they are all zero, These zeros can be substituted into Eq. (11, 1a),
which can be used 1o calculate a new value for vy = by /oy, Then we substitute this new
value of x; along with the previous guess of zero for x3 into Eq. (11.15) 1o compute a new
value for xo. The process is repeated for Eq. (11, 1) to calculate a new estimate for vy, Then
we return o the first equation and repeat the entire procedure until our solution converges
closely enough to the true values, Convergence can be checked using the criterion that for
all 4,

. il
X — X
LN w 100% < &, (11.2)

Eai =

X

EXAMPLE 11.1  Gauss-Seidel Method
Problem Statement,  Use the Gauvss-Seidel method to obtain the solution for

3.1‘| —D.!A’g —0.2,1:3 = 7.85
Ol + Ty —03x; =193
030 — 020+ 0= 714

Note that the solution is {x}" =3 —25 7].
Solution.  First, solve each of the equations for its unknown on the diagonal:

TR+ 01y +0.2x,

X = 7 (E11.1.1}
19,3 — 0.1x; + 0.3x

0= - ! : (E11.1.2)
71.4 — 030 +0.2x

= 0 (E11.1.5)

By assuming that xy and ¥y are zero, Eq. (E11.1.1) can be vsed to compute

TBS 4 010} 4 0.2(0)
X = 3

= 2.616667
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This value, along with the assumed value of x2 = 0, can be substituted into Eq. (E11.1.2)
to caleulate

=193 - 0.1{2.616667) + 0.3(0)

Xy = 7 = 2794524

The first iteration 15 completed by substituting the calculated values for x; and 1 into
Eq.(E11.1.3) to vield

714 -03(2.616667) + 0.2(-2.794524)

0 = 7.005610

A3

For the sccond iteration, the same process is repeated o compute

78S 4+ 0.1(—2.794524) 4 0.2(7.005610)

X - = 2.990557

o Z193-0l 12.9905;?1 +03(T.005610) _  4o0cre
71.4 - 0.3(2.990557) + 0.2(~2.499625

xy = { I;+ { L = 7.000291

The method is, therefore, converging on the true solution. Additional iterations could be
applied 1o improve the answers, However, in an actual problem, we would not know the
true answer o priort, Consequently, Eq. (11.2) provides a means to estimate the error, For
example, for x:

2000357 — 2.616667

A — ‘
Ea.l 3990557 * 100% = 12.5%

For x; and x3, the error estimates are £, 2 = 11L.8% and £, » = 0.076%. Note that, as was
the case when determimng roots of a single equation, formulations such as Eq. (11.2) usu-
ally provide a conservative appraisal of convergence. Thus, when they are mel, they ensure
that the result is known 1o at least the tolerance specified by &,

As each new x value is computed for the Gauss-Seidel method, it is immediately used
in the next equation to determine another x value. Thus. if the solution is converging, the
best available estimates will be employed. An alternative approach, called Jacobi ireration,
utilizes a somewhat different tactic. Rather than using the latest available x's, this tech-
nique uses Eq. (11.1) to compute a set of new x's on the basis of a set of old x's. Thus, as
new values are generated, they are not immediately used but rather are retained for the next
iteration.

The difference between the Gauss-Seidel method and Jacebi iteration is depicted in
Fig. 11.1. Although there are certain cases where the Jacobi method is useful, Gauss-5Seidel’s
utilization of the best available estimates usually makes it the method of preference.
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First iteration

o = = ax = apadiy, = by = a5 = apxtag,

o= — @k ) s s = e = — k) i

Xy = Aby = gy x) gt e X Wy = ooy X, — A e
1

¥ Second iteration

1
X = b = gk = apta, X = Aby = apx = aanta,)
i r
X = Uy = ayg g Xy = Wy = gy oty iy
1
oy = Ay = agay = agafeg X = Uy gk = gl ey
{a) {b)

FIGURE 11.1
Graphical depiction of the diference batween [ | the Gauss-Seidel and [+ | the Jocobi itercative
methods for su;:?'.-'ing simultanecus linear U|gc:|.'_:rt_=,su;'. BTGNS,

11.1.1 Convergence and Diagonal Dominance

Note that the Gauss-Seidel method is similar in spirit o the technigue of simple fixed-point
iteration that was used in Section 6.1 to solve for the roots of a single equation. Recall that
simple fixed-point iteration was sometimes nonconvergent. That is, as the iterations pro-
gressed, the answer moved farther and farther from the correct result.

Although the Gauss-Seidel method can also diverge, because it 1s designed for linear
systems, its ability to converge is much more predictable than for fixed-point iteration of
nonlinear equations. It can be shown that if the following condition holds, Gauss-Seidel
will converge:

L
il > lay] (11.3)
Tat

That is. the absolute value of the diagonal coefficient in each of the equations must be
larger than the sum of the absolute values of the other coefficients in the equation. Such
systems are said to be diggonallv dominani. This criterion is sufficient but not necessary
for convergence. That is, although the method may sometimes work if Eq. (11.3) is not
met, convergence is guaranteed if the condition is satisfied. Fortunately, many engineer-
ing and scientific problems of practical importance fulfill this requirement. Therefore,
Gauss-Seidel represents a feasible approach to solve many problems in engineering and
science.
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11.1.2 MATLAB M-file:

Before developing an algorithm, let us first recast Gauss-Seidel in a form that is com-
patible with MATLAB's ability to perform matrix operations. This is done by expressing

Eqg.{1l.1)as

PR by - 42 riJl.d - 43 rult]

[ 2 ;
) ) )

new ba _ i e 023 g

Ay = X *3
i [{ 58] [{55]
iy a1 e (5% .

e DA e T2 e

[yl i3 ! [{ER] ’

MNotice that the solution can be expressed concisely in matrix form as

lx} = [d} = [C]{x} (11.4)
where
hu’rﬁ'l;
ld} = I bafaz }
b fass

and

0 dypfay dsfan
[C]=| anfaxn 0 anfen
asifav  ayfan 0

An M-file to implement Eq. (11.4) is listed in Fig. 11.2,

11.1.3 Relaxation

Relaxation represents a slight modification of the Gauss-Seidel method that is designed to
enhance convergence. After each new value of v is computed using Eq. (11.1). that value is
modified by a weighted average of the results of the previous and the present iterations:

X = A (1= ) (11.3)

where A is a weighting factor that is assigned a value between 0 and 2.

If i = [, {1 — &) is equal to 0 and the result is unmodified. However, if & is setata
value between 0 and [, the result is a weighted average of the present and the previous re-
sults. This type of modification is called underrelavarion. It is typically employed to make
a nonconvergent system converge or to hasten convergence by dampening out oscillations.

For values of A from | to 2, extra weight is placed on the present value. In this in-
stance. there is an implicit assumption that the new value is moving in the correct direction
toward the true solution but at too slow a rate. Thus, the added weight of A is intended to
improve the estimate by pushing it closer to the truth. Hence, this type of modification,
which is called everrelaxation, is designed to accelerate the convergence of an already con-
vergent system. The approach is also called successive overrelaxarion, or SOR.
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function x = GaussSeidel (A.b,es, maxit)
% Gaussseidel (A, b)) -

% Gaugs Seidel method,

¥ input:

% B = coefficient matrix

¥ b = right hand side vector

% eg = (opticnal}l stop critericon (%) {default = 0. 00001)
% maxit = {optional) max iteraticns (default = 50)

% output:

%

X = Boluticon vector

% defaulr wvalues
if nargin=4, maxit=50; end
if nargin<3, es=0.00001; end

[m,nl = size{l);
if m-=n, error('Matrix A must be square'}; end
s
o n i p e B
B s
x{ir = 0;
end
R
5] B Bt B ¢
MliabEsn U e e e R B e
end
e
d{il = b{i1/Ali,1);
end
TE R R
while {1}
xold = x;
For b oy
et R i B R R R
SR
eali] = abs{(x(i} - xald{i)}/x(i}] * 100;
end
end

iter = iter+l;
if max{eal<=es | iter >= maxit, break, end
end

FIGURE 11.2
PAATLAR Mdile 1o irnpk:rnun'! Couss-Seidel,
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11.2

The choice of a proper value for & is highly problem-specific and is ofien determined
empirically, For a single solution of a set of equations it is ofien unnecessary. However, if
the system under study is to be solved repeatedly, the efficiency introduced by a wise
choice of A can be extremely important, Good examples are the very large systems of lin-
ear algebraic equations that can occur when solving partial differential equations in a vari-
ety of engincering and scientific problem contexts,

NONLINEAR SYSTEMS

The following is a set of two simultaneous nonlingar equations with two unknowns;

A+ xx =10 (11.6a)
X3 4 3x103 = 57 (11.6h)

In contrast to linear systems which plot as siraight lines (recall Fig. 8.1), these equations
plot as curves on an x> versus vy graph, As in Fig, 11.3, the solution is the intersection of
the curves.

Just as we did when we determined roots for single nonlinear equations, such systems
of equations can be expressed generally as

filvp e o) =0

fale xa o x) T_U (117}

ot ooy =0

Therefore, the solution are the values of the x"s that make the equations equal 1o zero.

FIGURE 11.3

Graphicol depiction of the solution of hwa simulionecus nonlineor equations.

= 10

Solution
n=2,5=23

4 — X+ 3nai = 67
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EXAMPLE 11.2

11.2.1 Successive Substitution

A simple approach for solving Eq. (11.7} is to use the same strategy that was employed for
fixed-point iteration and the Gauss-5eidel method. That is, each one of the nonlinear equa-
tions can be solved for one of the unknowns. These equations can then be implemented
iteratively to compute new values which (hopefully) will converge on the solutions. This
approach, which is called successive substitution, is illustrated in the following example.

Successive Substitution for a Nonlinear System

Problem Statement. Use successive substitution to determine the roots of Eq. (11.6).
Nate that a correct pair of roots is x; = 2 and x2 = 3. Initiate the computation with guesses
of v = 1.5 and x> = 3.5.

Selution.  Equation (11.6a) can be solved for

10— xf
X = {E!12H
A2
and Eq. (11.68) can be solved for
Xy =57 —3xx3 (E11.2.2)

On the basis of the initial guesses. Eq. (E11.2.1) can be used to determine a new value
of xy:

B 10— ¢1.5)%

X = —2.21429
" 35 2

This result and the initial value of v2 = 3.5 can he substituted into Eq. (E11.2.2) to deter-
mine a hew value of x:
xy =57 —3(2.21429)(3.5)° = —24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on the
second iteration:

o 10 — (2.21429)°
= T0437516

X3 = 57 = 3(—0.209100(~24.37516)" = 429.709

= —0.20910

Obviously, the approach is deteriorating,
Now we will repeat the computation but with the original equations set up in a differ-
ent format, For example, an allernative solution of Eq. (11.6a) s

X =4 ID—,m;g

and of Eq. (11.64) 15

_ 57— X2
= 3.1‘]
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Now the results are more satisfactory:

Xy =/ 10 = E5(3.5) = 2.17943

| 5735
X =

I
Py 327945 86051

¥y o=/ 10— 2.17945(2.86051) = 194053

57 — 286051
wo= 2= 404085
. 3(1.94033) 04955

Thus, the approach is converging on the true values of v; = 2 and x; = 3.

The previous example illustrates the most serious shortcoming of successive
substitution—that is, convergence often depends on the manmer in which the equations
are formulated. Additionally, even in those instances where convergence is possible, di-
vergence can occur if the initial guesses are insufficiently close to the true solution. These
criteria are so restrictive that fixed-point iteration has limited utility for solving nonlinear
SYSIES,

11.2.2 Newton-Raphson

Just as fixed-point iteration can be used to solve systems of nonlinear equations, other open
root location methods such as the Newton-Raphson method can be used for the same pur-
pose. Recall that the Newton-Raphson method was predicated on employing the derivative
(i.e.. the slope) of a function to estimate its intercept with the axis of the independent
variable—that is, the root. In Chap. 6, we used a graphical derivation to compute this esti-
mate. An alternative is to derive it from a first-order Taylor series expansion:

Flaia) = fO) + G — 20 () (11.8)
where v; is the initial guess at the root and x; ) 1s the point at which the slope intercepts the
x axis. At this intercept, f(x; ) by definition equals zero and Eq. (11.8) can be rearranged
to vield

flx)
frix)
which is the single-equation form of the Newton-Raphson method,

The muliiequation form is derived in an identical fashion. However, a multivariable
Taylor series must be used to aceount for the Tact that more than one independent variable
coniributes (o the determination of the root. For the two-variable case, a first-order Taylor
series can be writien for each nonlinear equation as

(1193

Xl = X —

_ a1 ifi,
fravr = fri +(11.ni""-fl.sJ,f—_l'i‘{I?.ul“-Tz.f} - (11 10a)
iy RS
tfa; dfs;
Frivr = fri+ e — X J2i + X200 — X24) fai (11,108}

iy Xz
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Just as for the single-equation version, the root estimate corresponds o the values of x; and
xy,where fi 4 and f7 . equal zero, For this sitvation, Eq. (11, 10% can be rearranged (o give

afy; iy i iy
.'h'rxl.m + ﬁﬂ’z.m =—f1; +-'f|.f£ + X2y {_h'r (11.11a)
dx s axy axs
iy it ) iy iy
—Xpipl X = = b X  x— 1118k
”-TI Li+1 H’.Ig 2041 f N 1,§ B 2 ;i,l"z { ’

Because all values subscripted with i's are known (they correspond to the latest guess or ap-
proximation), the only unknowns are xy ;. and vz ;5. Thos, Eq. (11 11)is a set of two linear
equations with two unknowns. Consequently, alzebraic manipulations (e.g., Cramer’s rule)
can he employed to solve for

'aJIr.ZJ ‘:UI] A
i Touia A e
Y =a, - — 2 (1.12a)
dfvi dfas  dfu 0f
E‘.U.'] t'ixg H.l'z H.I]
ilfi, Coifa
i ,}xf - f1i ,“_4
X1 = X2 ! ool (11.126)

afiidfu 9fi 0f

aI] f‘.'.l'] fi.l'g ff.?l']

The denominator of each of these equations 1s formally referred to as the determinant of the
Jacobian of the system.,

Equation (11.12) is the two-equation version of the Newton-Raphson method. As in the
following example, it can be employed teratively (o home in on the roots of two simul-
Laneous equations,

EXAMPLE 11.3  Newton-Raphson for a Nonlinear System

Problem Statement.  Use the multiple-equation Newton-Raphson method to determine
roots of Eq. (11.6). Initate the computation with guesses of vy = 1.5 and x; = 3.5,

Solution,  First compute the partial derivatives and evaluate them at the initial guesses of
xand v:

5 i

r.f].ﬂ =20+ =215 435=65 ‘.fi'ﬂ =1 = 1.5
fil:[ tixz

i 8f20

=3x; = 3(3.5)° = 36,75

- =] 4+ 0xxy =14+ 6(1.5135) =323
iy

i

Thus, the determinant of the Jacobian for the first iteration s
6.5(32.5) — 1.5(36.75) = 156,125

The values of the functions can be evaluated at the initial guesses as
fro= (15" 4+ 1.53.5 - 10= =25

fro=13.5+3(1.503.57 — 57 = 1.625
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These values can be substiteted into Eq, (11.12) 1o give

—2.5(32.5) — 1L.625(15)
f= 15— = 2.03
¥i=13 156.125 03603

1L625(6.5) — (—2.5)(36.75)

=35~ =2.843
=35 T 2.84388

Thus, the results are converging to the troe values of x; = 2 and x; = 3, The computation
can be repeated until an acceptable accuracy is obtained,

When the multiequation Newton-Raphson works, it exhibits the same speedy quadratic
convergence as the single-equation version. However, just as with successive substitution,
it can diverge if the initial guesses are not sufficiently close to the true roots. Whereas
graphical methods could be emploved to derive good guesses for the single-cquation case,
no such simple procedure 15 available for the multiequation version. Although there are
some advanced approaches for obtaining acceptable first estimates, often the initial guesses
must be obtained on the basis of trial and error and knowledge of the physical system being
maodeled,

The two-equation Newton-Raphson approach can be generalized 1o solve n simulta-
neous equations. To do this, Eq. (11.11) can be written for the kth equation as

afi afy afi ) dfy dify
T R I R s T (R i TN Rl S S R s
i sy i xy iy s
afe i
Fooe oy So (11.13)
axg,

where the first subscript & represents the equation or unknown and the second subscript de-
notes whether the value or function in guestion is at the present value (i) or at the next value
{i + 1) Notice that the only unknowns in Eqg. (11.13) are the x; ;. terms on the left-hand
side. All other guantities are located at the present value (i) and, thus, are known at any
iteration. Conseguently. the set of equations generally represented by Eq. (11.13) {i.e., with

numerically by the elimination methods elaborated in previous chapters.
Matrix notation can be employed to express Eqg. (11.13) concisely as

[ZHxi1} = =1+ £ (11.14)

where the partial derivatives evaluated at i are written as the Jacobian marric:

afy; df iy
iy dxa o ax,
[Z]1= | dx ixy iy (11.15)
a.f:f,l' Hﬁ;.f . H.fn.e‘
il ax: ixy |
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The initial and final valees are expressed in vector form as
T
} - Lxl.l' vr.lr.J'J

fx X2

and

.
el = Leim a2 Xai+1 ]

Finally, the function values at § can be expressed as

=1 S Jui

Equation (11.14) can be solved using a technique such as Gauss climination. This
process can be repeated ileratively to obtain refined estimates in a fashion similar to the
two-gguation case in Example 11.3,

We should note that there are two shoricomings to the foregoing approach. First,
Eq. (11.15) is sometimes inconvenient to evaluate. Therefore, variations of the Newton-
Raphson approach have been developed 1o circumvent this dilemma. As might be ex-
pected, most are based on using finite-difference approximations for the partial derivatives
that comprise [£]. The second shoricoming of the multiequation Newton-Raphson method
is that excellent initial guesses are usually required to ensure convergence. Because these
are sometimes difficult or inconvenient to obiain, alternative approaches that are slower
than Newton-Raphson but which have better convergence behavior have been developed,
One approach is 1o reformulate the nonlinear system as a single function:

H
Fix) =Y [fita. xax)f
i=
where i (vi, x2. ..., %) is the ith member of the original system of Eq. (11.7). The values

of x that minimize this funclion also represent the solution of the nonlinear system. There-
fore, nonlinear optimization techniques can be employed to obtain solutions.

PROBLEMS

11.1 (a) Use the Gauvss-Seidel method to solve the following
systern unti] the percent relative ervor falls below &, = 53%:

0.8 —0.4 X 41
=04 08 =04 X3 p=14 23
04 L8 X3 105

(b} Repeat (a) but use overrelaxation with » = 1.2,
I1.2 Use the Gaoss-Seidel method to solve the following
system uneil the percent relative error falls below &, = 5%:

ey +2ra — wa== 27
—3xp = 6xy + 2xy = ~61.5
X+ x4 5x:=-21.5

11.3 Repeat Prob. 11.2 bur use Jacobi iteration.
11.4 The following system of equations 15 designed to deter-
mine concentrations (the ¢'s in g/m”) in a series of coupled

reactars as a function of the amount of mass input to each
reactor (the right-hand sides in g/day

|5('|_ - 3[‘: - iy = 2800
=3¢y + 8¢y — 6oz = 1200
=dey = oz 120y = 2350
Solve this problem with the Gauss-Seidel method to
£y = 5%,

11.5 Use the Gauss-Seidel method (a) without relaxation
and {(b) with relaxation (4 = 1.2) to solve the following sys-
tem to a tolerance of & = 5%, If necessary, rearrange the
equalions to achigve converzence.

1).'1 —61’2— Xy = —35
=3k — X2+ Tra=-34
-8y 4+ 1 — 2y = =20
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116 Of the following three sers of linear equations, identify
the set that cannot be solved using an iterative method like
Ciauss-Seidel. Rearrange the equations as necessary to foster
comvergence. Show using any number of iterations that is
necessary that your solution does not converge.

Set One Set Two Set Three
By + 3v+4+ =17 —¥+ 4= 7 I+ v+ 5r=7
—&y +7r=1 —Zx 4+ v~ Sr= -3 r+dv— =4
b dy - =35 2v— =1 v+ v— =3

11.7 Determing the solution of the simultanecus nonlinear
equations:

y=—x*+x+05
¥4 ey =t

Lise the Newton-Raphson method and employ initial guesses
ofx =y =121

11.8 Determing the solution of the simultanecus nonlinear
egquations:

T 7
=5y

v+l = .l'.

-

13

{a) Graphically.

(b} Successive substitution using initial guesses of v =
v= 15

{c) Newton-Raphson using initial guesses of 1= v = 1.5,
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce you to how least-squares
regression can be used to fit a straight line to measured data. Specific objectives
and topics covered are

*  Understanding the difference between regression and interpolation.

*  Familiarizing vourself with some basic descriptive statistics and the normal
distribution.

*  Knowing how to compute the slope and intercept of a best-fit straight line with
linear regression.

*  Knowing how to compute and understand the meaning of the coefficient of
determination and the standard error of the estimate.

*  Understanding how to use transformations to linearize nonlinear equations so
that they can be fit with linear regression.

*  Knowing how to implement linear regression with MATLAB.

YOU'VE GOT A PROBLEM

n Chap. I. we noted that a free-falling object such as a bungee jumper is subject to the
upward force of air resistance. As a first approximation, we assumed that this force was
proportional to the square of velocity as in

Fipo= cgv’ (12.1)

where Fy = the upward force of air resistance [N = kg m/s’], ¢y = a drag coefficient
{kg/m), and v = velocity [m/s].

Expressions such as Eq. (12.1) come from the field of fluid mechanics. Although such
relationships derive in part from theory. experiments play a critical role in their formula-
tion. One such experiment is depicted in Fig. 12.1. An individual is suspended in a wind

196
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FIGURE 12.1

Wind tunna! experiment to measure how the force of air resistance depends on velocity

1600 —
B [
1200 — L4
= E
<800 =
C . 7
400 .
C 5 L i
% 20 a0 60 80
U, mis

FIGURE 12.2
Plott of lorce versus wind velociyy for an ohiect suspended in o wind tunnel,

TABLE 12.1 Experimental data for force {N) and velocity {m/s] from a wind tunnel

experiment.
Sy mfs 10 20 30 Af) 50 G0 70 80
N 25 70 380 350 &0 1220 830 1450

tunnel (any volunteers?) and the force measured for various levels of wind velocity, The
result might be as listed in Table 121,

The relationship can be visnalized by plotting force versus velocity. As in Fig. [2.2,
several features of the relationship bear mention. First, the points indicate that the force in-
creases as velocity increases. Second. the points do not increase smoothly, but exhibit
rather significant scatter, particularly at the higher velocities. Finallv, although it may not
be obvious, the relationship between force and velocity may not be linear. This conclusion
becomes more apparent if we assume that force is zero for zero velocity,
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12.1

In Chaps. 12 and 13, we will explore how to fit a “best” line or curve (o such data, In
so doing, we will illusirate how relationships like Eq. (12,1} arise from experimental data,

WHAT IS CURVE FITTING?

Data is often given for discrete values along a continuum. However, you may require eski-
mates al points between the discrete values. Chapters 12 through 15 describe techniques to
fit curves o such data 1o obtain intermediate estimates, In addition, you may require a sim-
plified version of a complicated function. One way to do this s to compute values of the
function at a number of discrete values along the range of interest. Then, a simpler function
may be derived to it these values, Both of these applications are known as curve fitting.

There are two general approaches for curve fitting that are distinguished from cach
other on the basis of the amount of error associated with the data. First, where the data
cxhibits a significant degree of error or “scatter.” the strategy is to derive a single curve that
represents the general trend of the data, Because any individual data point may be incor-
rect, we make no effort o intersect every point. Rather, the curve is designed o follow the
pattern of the points taken as a group. One approach of this nature is called least-sguares
regression (Fig, 12.3a),

Second, where the data is known (o be very precise, the basic approach is to fit a curve
or a serics of curves that pass directly through each of the points. Such data usually origi-
nates from tables, Examples are values for the density of water or for the heat capacity of
gases as a function of temperature. The estimation of values between well-known discrete
points is called inferpolation (Fig, 12.3h and o),

12.1.1 Curve Fitting and Engineering Practice

Your first exposure (o curve fiting may have been to determine intermediate values from
tabulated data—for instance, from interest tables for engineering economics or from sicam
tables for thermodynamics, Throughout the remainder of your career, vou will have fre-
guent oceasion to estimate intermediate values from such tables,

Although many of the widely used engineering propertics have been tabulated, there
are a great many more that are not available in this convenient form. Special cases and new
problem contexts ofien require that you measure your own data and develop your own pre-
dictive relationships. Two types of applications are generally encountered when fiting
cxperimental data; trend analysis and hypothesis testing,

Trend analysis represents the process of using the pattern of the data 1o make predie-
tions, For cases where the data is measured with high precision, you might utilize interpo-
lating polynomials, Imprecise data is often analyzed with least-squares regression,

Trend analvsis may be used to predict or forecast values of the dependent variable.
This can involve extrapolation bevond the limits of the observed data or interpolation
within the range of the data. All fields of engineering and science involve problems of
this type,

A second application of experimental curve fitting is hvpothesis festing. Here, an
cxisting mathematical model is compared with measured data. If the model coefficients are
unknown, it may be necessary to determine values that best fit the observed data. On the
other hand, if estimates of the model coefficients are already available, it may be appropri-
ate to compare predicted values of the model with observed values to test the adequacy of
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FIGURE 12.3
Three atternpts 1o fit o “best” curve shicugh five data points: | ] leastsquares regression, |+ ) linear
im(-:rf_mk;iiur‘:, el - curvilineor inr{?rpoklriorl.
the model. Often, alternative models are compared and the “best™ one is selected on the
basis of empirical observations.

In addition to the foregoing engineering applications, curve fitting is important in
other numerical methods such as integration and the approximate solution of differential
equations, Finally. curve-fitting techniques can be used to derive simple functions to
approximate complicated functions.

12.2 STATISTICS REVIEW

Before describing least-squares regression, we will first review some basic concepts from
the field of statistics. If you are familiar with the concepts of the mean. standard deviation,
residual sum of the squares, and the normal distribution. feel free to skip the following pages
and proceed directly to Section 12.3. If you are unfamiliar with these concepts or are in need
of a review, the tollowing material is designed as a brief introduction to these topics.
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TABLE 12.2 Measurements of the coefficient of thermal expansion of siructural steel
[x 10-] in/lin - °F].

G495 & .5%5 6615 G635 G485 0535
BG83 .505 6435 5.625 6715 G655
&.755 L0235 6713 &.575 G053 £.005
5,363 2514 63535 6,393 6775 0,083

12.2.1 Simple Statistics

Suppose that in the course of an engineering study, several measurements were made of a
particular quantity. For example, Table 12.2 contains 24 readings of the coefficient of ther-
mal expansion of a structural steel, Taken ar face value, the data provides a limited amount
of information—that is, that the values range from a minimum of 6,395 10 a maximum of
6.775. Additional insight can be gained by summarizing the data in one or more well-
chosen statistics that convey as much information as possible about specific characteristics
of the data set. These descriptive statistics are most often selected 1o represent (1) the loca-
tion of the center of the distribution of the data and (2) the degree of spread of the data set.

The most common measure of central tendency is the arithmetic mean. The arivhmetic
meart (¥) of a sample is defined as the sum of the individual data points () divided by the
number of points (n), or

- ¥

V= Ln (12.2)
"

where the summation (and all the succeeding summations in this section) is from § = |

through rr.
The most common measure of spread for a sample is the standard deviation (s,) about
the mean:

[ &

Sy =
v 1||I|IJ'I—|

where 8, is the total sum of the squares of the residuals between the data points and the
mean, or

(12.3)

S5 =% -7’ (12.4)

Thus, if the individual measurements are spread our widely around the mean, 5, (and. con-
sequently, s, ) will be large. If they are grouped tightly, the standard deviation will be small,
The spread can also be represented by the square of the standard deviation, which is called
the variance:

S Yiw—¢?

e 12.5)
¥ n— 1 !

MNote that the denominator in both Eqgs. (12.3) and (12.5) is n — 1. The quantity 1 — |
is referred to as the degrees of freedom. Hence S, and s, are said 1o be based on i — 1 de-
grees of freedom. This nomenclature derives from the fact that the sum of the quantities
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EXAMPLE 12.1

upon which & 18 based (te., ¥ — vy, ¥ — va, ..., ¥ — v} is zero. Consequently, if ¥ 15
known and n — 1 of the values are specified, the remaining valoe is fixed. Thus, only i — |
of the values are said (o be freely determined. Another justification for dividing by n — 1 is
the fact that there is no such thing as the spread of a single data point. For the case where
no=1, Egs. (12.3) and {12.5) vicld a meaningless result of infinity.

We shoold note that an aliernative, more convenient formula is available to compute
the variance:

s _ X - (Ex) s

8
X no— 1

(12.6)

This version does not require precomputation of ¥ and yields an identical result as Eq. (12.5).
A final statistic that has utility in quantifying the spread of data is the coefficient of
variation (c.v.). This statistic is the ratio of the standard deviation to the mean. As such. it
provides a normalized measure of the spread. It is often multiplied by 100 so that it can be
expressed in the form of a percent:
ev. = L x 100% (12.7)

v

Simple Statistics of @ Sample

Problem Siatement.  Compute the mean, variance, standard deviation, and coefficient of
variation for the data in Table 12.2,

Solution.  The data can be assembled in tabular form and the necessary sums computed
as in Table 12.3,
The mean can be computed as [Eq. (12.2)],

1584

L
YT

Asin Table 12.3, the sum of the squares of the residuals is 0.217000, which can be used to
compuie the standard deviation [Eq. (12.3)]:

o [D.217000
EY T

the variance [Eq. (12.5)]:
57 = (0.097133)" = 0.009435

= (L.09T7133

and the coelficient of variation [Eq. {12.7)]:
oy, = 2097133

T T
The validity of Eq. (12.6) can also be verified by computing
;1045657 — (158.400)7/24

s

5= G-

w 100% = 1.47%

= 0.009435
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TABLE 12.3 Data and summations for computing simple descriptive statistics for the
coefficients of thermal expansion from Table 12.2.
- }I 2
&, 395 L0420 A0 895
2 G435 002723 Al A0
3 485 D323 47 055
4 . 495 2.071103 42,185
3 3, 505 00903 42315
el G515 Q00723 47 445
7 &.555 D00203 47 968
8 &.555 000203 42 968
9 &, 565 000123 43,069
10 G575 Q00063 43,231
1t 595 OGO 43.4%4
12 &, 05 200002 43.626
13 [N whie] HIRE T 43.758
14 5,625 Q00062 43,891
15 & 675 000062 43891
14 &6 Q00122 44,023
17 655 000302 44 FEY
18 6,655 Q00302 44 259
1% G505 00427 4d 427
20 .G85 Q00722 44,689
21 4715 001322 45091
22 = ] Q01322 45091
23 4,735 Q02407 45,630
24 & 775 D.03062 45901
Z 158,400 021700 1045 657

12.2.2 The Normal Distribution

Another characteristic that bears on the present discussion is the data distribution—that is,
the shape with which the data is spread around the mean. A histogram provides a simple
visual representation of the distribution. A histogram is construcied by sorting the mea-
suremenis into intervals, The units of measurement are plotied on the abscissa and the
frequency of ocenrrence of each interval is plotted on the ordinate.

As an example, a histogram can be created Tor the data from Table 12.2, The result
(Fig. 12.4) suggests that most of the data is grouped close (o the mean value of 6.6.

If we have a very large set of data, the histogram often can be approximated by a
smooth curve, The symmetric, bell-shaped curve superimposed on Fig. 12.4 is one such
characteristic shape—ithe norma! distriburion. Given enough additional measurements, the
histogram for this particular case could eventually approach the normal distribution.

The concepts of the mean, standard deviation, residual sum of the squares, and nor-
mal distribution all have great relevance to engineering practice. A very simple example is
their use 1o guantify the confidence that can be ascribed 1o a particular measurement. If a
quantity is normally distributed, the range defined by ¥ — s, to ¥ + 5, will encompass
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FIGURE 12.4
A histngram used lo depict the distribution of datn. As the number of dota points incrensas, the
histogram ofien approaches the smooth, belkshoped curve colled the nommal distribution,
approximately 68% of the total measurements. Similarly. the range defined by ¥ — 25, w0
¥+ 2y will encompass approximately 95%.

For example, for the data in Table 12.2, we caleulated in Example 12,1 that ¥ = 6.6
and s, = 0.097133. Based on our analysis, we can tentatively make the statement that
approximately 95% of the readings should fall between 6.405734 and 6794266, Because it
is s0 Tar outside these bounds, if someone told vs that they had measured a value of 7.35, we
would suspect that the measurement might be erroncous.

12.3 LINEAR LEAST-SQUARES REGRESSION

Where substantial error is associated with data, the best curve-fitting strategy is to derive
an approximating function that fits the shape or general trend of the data without necessar-
ily matching the individual points. One way to do this is (o derive the curve that minimizes
the sum of the squares of the discrepancy between the data points and the curve. This tech-
nique is called leasr-squares regression,

The simplest example of a least-squares approximation is fitting a straight line 1o a set

of paired observations: (v, vi), (¥, ¥2), ..., {x,, ). The mathematical expression for
the straight fine is
v=aytax+e (12.8)

where ap and ay are coefficients representing the intercept and the slope, respectively, and
¢ is the error, or residual, between the model and the observations, which can be repre-
sented by rearranging Eq. (12.8) as

E= v — iy — X (12.9)

Thus, the error, or residual, is the discrepancy between the true valoe of v and the approxi-
mate value, ag + a1x, predicied by the linear equation.
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12.3.1 Criteria for a “Best” Fit

One strategy for fitting a “best” line through the data would be to minimize the sum of the
residual errors for all the available data. as in

A A
D o=y —an—axy) (12.10)

i=l i=1
where i = total number of points. However. this is an inadequate criterion, as illustrated by
Fig. 12.5a, which depicts the fit of a straight line to two points. Obviously, the best fit is the
line connecting the points, However. any straight line passing through the midpoint of the
connecting line (except a perfectly vertical line) results in a minimum value of Eq. (12.10)
equal to zero because positive and negative errors cancel.

FIGURE 12.5

Examples of some criteria for “best [i" thal are inadequate for regrassion: |- | minimizas the sum
ol the residuals, [ | minimizes the sum of the absolute valuas of the residuals, and 1) minimizes
the maximum error of any individual point.
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Another logical criterion might be to minimize the sum of the absolute values of the
discrepancies. as in

L} L
ZlefI=ZIJ=;—un—m-rfl (12.11)
i=l i=1
Figure 12.55 demonstrates why this criterion is also inadequaie. For the four points shown,
any straight line falling within the dashed lines will minimize the sum of the absolute val-
ues of the residuals. Thus, this criterion also does not yield a unique best fir.

A third sirategy for fitting a best line is the minimax criterion. In this technique, the line
is chosen that minimizes the maximum distance that an individual point falls from the line,
As depicted in Fig. 12.5¢, this strategy is ill-suited for regression because it gives undue
influence to an outlier—that is, a single point with a large error. It should be noted that
the minimax principle is sometimes well-suited for fitting a simple function w0 a compli-
cated function (Carnahan, Luther, and Wilkes, 1969),

A strategy that overcomes the shortcomings of the aforementioned approaches is to
minimize the sum of the squares of the residuals:

i M
§ = Z*’E = E{J’r — ay —ayx;)* (12.12)
i I

This criterion has a number of advantages. including the fact that it yields a unigue line for
a given set of data, Before discussing these properties. we will present a technique for
determining the values of ay and a; that minimize Eq. (12.12).

12.3.2 Least-Squares Fit of a Straight Line

To determine values for ay and a;, Eq. (12,12} is differentiated with respeet to each
unknown coeflicient:

8,

= 2 N — X
Bag zli_h iy = d1.;)
5
el

= =23 "[(w —ap —ap)x]

Note that we have simplified the summation symbols: unless otherwise indicated, all sum-
mations are from § = | to n. Setting these derivatives equal to zero will result in a minimum
5,. If this is done, the equations can be expressed as

0= Z_\’f - Zﬂu - zdlxr'
0= Zxr- Wi — Eu[m - E H'l-xr?

Now, realizing that 3 ag = nap, we can express the equations as a set of two simultaneous
lingar equations with two unknowns (ay and a; )k

né + (Z x;) ar=3 ¥ (12.13)
(Z.r,—) do + (fo) ay =y xw (12.14)
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EXAMPLE 12.2

These are called the normal eguarions. They can be solved simultaneously for

i = S 5 (1215
n Zxx - [Ex,}
This result can then be used in conjunction with Eq. (12.13) to solve for
dy =¥ = ¥ (12.18)

where ¥ and & are the means of v and x, respectively.

linear Regression
Problem Statement.  Fit a straight line to the values in Table 12.1.

Selution.  In this application, force is the dependent variable (v} and velocity is the inde-
pendent variable (x). The data can be set up in tabular form and the necessary sums com-
puted as in Table 12.4.

The means can be computed as

360 5.135
— =45 Voo —— = (] 875
8 : 8

The slope and the intercept can then be calculated with Egs. (12.15) and (12.16) as

. B(312.850) ~ 360(5.135)
' TTR(20.400) — (3607

iy = 641.875 — 19.47024(45) = —234.2857

X =

= 10.47024

Using force and velocity in place of y and v, the least-squares fit is
F = =234 2857 + 19470240

The line, along with the data, is shown in Fig. 12.6.
Notice that although the line fits the data well, the zero intercept means that the equa-
tion predicts physically unrealistic negative forces at low velocities. In Section 12.3.4, we

TABLE 12.4 Data and summations needed to compute the bestfit line for the data from

Table 12.1.
2
1 10 25 100 250
2 20 A AD0 1,400
3 30 JBO SO0 11,400
4 A0 550 1600 22,000
5 50 A10 2.500 30,500
& &0 1,220 3,600 F3,200
7 0 a3 £ 900 58,100
8 80 1,450 6,400 116,000
5 360 5,135 20400 312,850
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FIGURE 12.6
leastsquares fit of a stoight line 1o the dalo from Toble 12.1

will show how transformations can be employed to derive an alternative best-fit line that is
more physically realistic.

12.3.3 Quantification of Error of Linear Regression

Any line other than the one computed in Example 12.2 results in a larger sum of the squares
of the residuals, Thus, the line is unigue and in terms of our chosen criterion is a “best” line
through the points. A number of additional properties of this fit can be elucidated by
examining more closely the way in which residuals were computed. Recall that the sum of
the squares is defined as [Eq. (12.12)]

H
Sr= 3~ ap — arx;)’ (12.17)
e

Notice the similarity between this equation and Eq. (12.4)
S=3 (- (12.18)

In Eq. (12.18), the square of the residual represented the square of the discrepancy between
the data and a single estimate of the measure of central tendency—the mean. In Eg. (12.17),
the square of the residual represents the square of the vertical distance between the data and
another measure of central tendency—the straight line (Fig. 12.7).

The analogy can be extended further for cases where (1) the spread of the points
around the line is of similar magnitude along the entire range of the data and (2) the distri-
bution of these points about the line is normal, [t can be demonstrated that if these criteria
are met, least-squares regression will provide the best (i.c.. the most likely) estimaies of ay
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i
Measurement

iy T J;

X
FIGURE 12.7
The residual in lineor regression reprasents the vertical distance batween a data peini and the
straight line.

and ¢ {Draper and Smith, 1981). This is called the maximum [ikelihood principle in statis-
tics. In addition, if these criteria are met, a “standard deviation™ for the regression line can
be determined as [compare with Eq. (12.3)]

|5 (12.19
Syir = It
VX VH—Z )

where s, is called the standard ervor of the estimare. The subscript notation “v/x™ desig-
nates that the error is for a predicted value of v corresponding to a particular value of x.
Also, notice that we now divide by n — 2 because two data-derived estimates—ayp and g;—
were used to compute S, ; thus, we have lost two degrees of freedom. As with our discus-
sion of the standard deviation, another justification for dividing by n — 2 is that there is no
such thing as the “spread of data”™ around a straight line connecting two points. Thus, for
the case where n = 2, Eq. (12.19) vields a meaningless result of infinity.

Just as was the case with the standard deviation, the standard error of the estimate
quantifies the spread of the data. However, s, quantifies the spread around the regression
line as shown in Fig. 12.86 in comtrast to the standard deviation s, that quantified the
spread grouned the mean (Fig. 12.8q),

These concepts can be used to quantify the “goodness™ of our fit. This is particularly
useful for comparison of several regressions (Fig. 12.9). To do this, we return to the origi-
nal data and determine the total sum of the squares around the mean for the dependent
variable {in our case, v). As was the case for Eq. (12.18), this quantity is designated 5,. This
is the magnitude of the residual error associated with the dependent variable prior to
regression. After performing the regression, we can compute 5;, the sum of the squares of
the residuals around the regression line. This characterizes the residual error that remains
after the regression. It is, therefore, sometimes called the unexplained sum of the squares.
The difference between the two guantities, § — 5., guantifies the improvement or error
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Examples of linear regression with () small and |- ] large residual erors
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EXAMPLE 12.3

reduction due 1o describing the data in terms of a straight line rather than as an average
value, Because the magnitude of this quantity 1s scale-dependent, the difference is normal-
ized w8 to vield
',"2 — S; - Sr

5

(1220

where r? is called the coefficient of determination and r is the correlation coefficient
(= ~'r?). Foraperfect fit, §, = O and r = 1, signifying that the line explains 100% of the
variability of the data. For r* =0, 5, = § and the fit represents no improvement. An
alternative formulation for r that is more convenient for computer implementation is
np o) =X 'i
r= 20 - (3. %) o v) (12.21)

YnE s - (Ex) Y2y - (Ty)

Estimation of Errors for the Linear Least-Squares Fit

Froblem Statement. Com pute the total standard deviation, the standard error of the esti-
mate., and the correlation coefficient for the data in Example 12.2,

Solution.  The data can be set up in tabular form and the necessary sums computed as in
Table 12.5.
The standard deviation is [Eq. (12.3)]

I 1,808,297

by =y S = 50826

and the standard error of the estimate is [Eq. (12.19)]

(216,118

Svix

TABLE 12.5 Data and summations needed fo compute the goodness-offit statistics for the
daia from Table 12.1.

R ( R [ o e
1 10 25 —3% 58 J80.535 4,171
2 20 S0 15512 327,041 FRa5
3 30 IB0 349,87 48,579 211
4 40 55 544 52 3,441 30
5 a0 &0 FAD R P04 16,697
& &0 1,230 PITR3 334,209 81,837
7 70 B30 1, 128,63 35,391 89,130
8 B 1,45 1,323.33 653,066 16,044
5 30D 5135 1,808,297 216,118
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Thus, because sy =< 5, the linear regression model has merit. The extent of the improve-
ment is quantified by [Eq. (12.207]

. 1,808,297 — 216,118
- 1,808,297

or i = +/(L8R05 = (.9383. These results indicate that 88.05% of the original uncertainty
has been explained by the linear model.

= ()L.BBOS

Before proceeding, a word of caution is in order. Although the coefficient of determi-
nation provides a handy measure of goodness-of-fit, you should be careful not to ascribe
more meaning to it than is warranted. Just because r is “close™ to 1 does not mean that the
fit is necessarily “good.” For example, it is possible to obtain a relatively high value of r*
when the underlying relationship between y and x is not even lincar. Draper and Smith
{1981} provide guidance and additional material regarding assessment of results for linear
regression, In addition, at the minimum, you should always inspect a plot of the data along
with your regression curve,

12.3.4 Linearization of Nonlinear Relationships

Linear regression provides a powerfol technigue for fitting a best lne to data. However, it
is predicated on the Tact that the relationship between the dependent and independent vari-
ables is linear, This is not always the case, and the first step in any regression analysis
should be to plot and visually inspect the data to ascertain whether a linear model applies.
In some cases, wechnigues such as polynomial regression, which is desceribed in Chap. 13,
are appropriate. For others, transformations can be used to express the data in a form that
is compatible with lincar regression.
One example is the exponentiof meodel:

y = qyef? (12.22)

where ¢y and £, are constants, This model is vsed in many felds of engineering and sci-
ence to characterize quantities that increase (positive /) ) or decrease (negative #;) at a rate
that is directly proportional 1o their own magnitude, For example, population growth or
radivactive decay can exhibit such behavior. As depicted in Fig, [2.10a, the equation rep-
resents a nonlinear relationship (for 8y 22 0) between v and x,

Another example of a nonlinear model is the simple power eguation:

v o= gl (12.23)

where a2 and £ are constant coefficients, This model has wide apphicability in all fields of
engineering and science. As depicted in Fig, 12,106, the equation (for #7 £ 0) is nonlinear,
A third example of a nonlinear model is the saturation-growth-rate equation:

(12.24)
ﬁj + X

Y=o

where a1 and By are constant coefficients, This model, which is particularly well-suited
for characterizing population growth rate under limiting conditions, also represents a
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{al s} = {c i
L2 =]
@ %
g -
B &
@ &
= c
0 g

Inyée log ¥ vk
Slope = 3,
Intercept = In a, Intercept = 1/,
I log x 1/
Intercept = log «,
[} lah i

FIGURE 12.10

| equation, {1 fion. Pars |, | |, ond

fOns r_;[ ;’h.r’.-,-..

nonlinear relationship between v and x (Fig. 12.10c) that levels off, or “satrates,” as x
increases,

Nonlinear regression techniques are available 1o fit these eguations to experimental
data directly. However, a simpler aliernative is 1o use mathematical manipulations {o trans-
form the equations into a linear form. Then simple linear regression can be employed 1o £
the equations to data.

For example. Eqg. (12.22) can be linearized by taking its natural logarithm to vield

Iny = Inw; + H1x (12.25)

Thus, a plot of In v versus v will vield a straight line with a slope of 8; and an intercept of
In oy (Fig. 12,104,
Equation (12.23} is linearized by 1aking its base- 10 logarithm to give

log v = log o + fixlogx (12.26)
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EXAMPLE 12.4

Thus, a plot of Tog v versus log x will yield a straight line with a slope of #: and an inter-
cept of log @ (Fig. 12.10¢). Note that any base logarithm can be used to linearize this
model. However, as done here, the base-10 logarithm is most commonly employed.
Equation (12.24) is linearized by inverting it to give
lal, Bl (1227
¥ (] s ¥
Thus, a plot of 1/y versus 1 /x will be linear. with a slope of fs fu; and an intercept of 1 /oy
(Fig. 12.10f).
In their transformed forms, these models can use linear regression to evaluate the con-
stant coefficients. They could then be transtormed back to their original state and used for
predictive purposes. The following iltustrates this procedure for the power model.

Fitting Data with the Power Equation

Problem Statement.  Fit Eq. (12.23) to the data in Table 12.1 using a logarithmic trans-
formation of the data.

Solution.  The data can be set up in tabular form and the necessary sums computed as in
Table 12.6.
The means can he computed as
12.606 20.515
= 1.5757 =
8 ' 8

= 2.5644

-

i =

The slope and the intercept can then be calculated with Egs. (12.15) and (12.16) as

B(33.622) — 12.606(200.515)
o] =
1 8(20.516) — (12.606)?

ag = 25644 — 1Y842(1.5757) = —0.5620

= 1.9842

TABLE 12.6 Daia and summations needed fo fit the power model to the data from

Table 12.1

bog - fag (o - 3 Tog - log -
i 10 25 1.000 1.3%8 [ 1.3%8
2 20 J0 1301 1.845 1.&93 2.401
3 30 JED 1. AFF 2.580 2182 3.811
4 40 H85 1802 2.740 2567 4,390
5 50 A0 .65 2.785 2888 4737
& &0 1220 1 778 3088 3142 5 488
7 7 g30 1.845 2917 3,404 5385
a a0 1450 1203 314 3622 S O0E
¥ 12.606 20515 20516 33.622
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FIGURE 12.11

5

£

e thee cata from Table 121,00 ) The §it of the ranstormed data
vith the data

The least-squares fit is
log v = —~0.5620 4 19842 log x

The fit along with the data is shown in Fig. 12.11a.

We can also display the fit using the untransformed coordinates. To do this, the coeffi-
cients of the power model are determined as o7 = L 05620 — 2741 and Fa = 1.9842.
Using force and velocity in place of y and v, the least-squares fit is

F = 02741942

This equation. along with the data, is shown in Fig. 12,115,
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12.4

The fits in Example 12,4 (Fig. 12.11) should be compared with the one obtained
previously in Example 12.2 (Fig. 12.6) using linear regression on the uniransformed data.
Although both resulis would appear to be acceptable, the transformed result has the advan-
tage that it does not yield negative force predictions at low velocities, Further, it is known
from the discipline of fluid mechanics that the drag force on an object moving through a
fluid is often well described by a model with velocity raised to a power. Thus, knowledge
from the field you are studying ofien has a large bearing on the choice of the appropriate
madel equation you use for curve firting,

12.3.5 General Comments on Linear Regression

Before proceeding to curvilinear and multiple linear regression, we must emphasize the in-
troductory nature of the foregoing material on linear regression. We have focused on the
simple derivation and practical use of equations to it data. You should be cognizant of the
fact that there are theoretical aspects of regression that are of practical importance but are
beyond the scope of this book. For example, some statistical assumptions that are inherent
in the linear least-squares procedures are

1. Each x has a fixed value; 1t 1s not random and 15 known without error.
2, The v values are independent random variables and all have the same variance.
3. The y values for a given x must be normally distributed.

Such assumptions are relevant to the proper derivation and use of regression. For
example, the first assumption means that (1) the x values must be error-free and (2) the
regression of v versus x is not the same as v versus v. You are urged to consult other refer-
ences such as Draper and Smith (1981} to appreciate aspects and nuances of regression that
are bevond the scope of this book.

COMPUTER APPLICATIONS

Linear regression 1s so commonplace that it can be implemented on most pocket calcula-
tors. In this section, we will show how a simple M-file can be developed to determine the
slope and intercept as well as to create a plot of the data and the best-fit line. We will also
show how linear regression can be implemented with the built-in pelv £1¢ function.

12.4.1 MATLAB M-file: - - - - - - -

An algorithm for linear regression can be easily developed (Fig. 12.12). The required sum-
mations are readily computed with MATLAB s sum function. These are then used to com-
pute the slope and the intercept with Egs. {12.15) and (12,16}, The routine displays the
intercept and slope, the coefficient of determination, and a plot of the best-fit line along
with the measurements,

A simple example of the use of this M-file would be 1o 13t the force-velocity data that
was analyzed in Example 12.2:

== ¥ = [10 20 20 40 50 60 70 801;
== 3 = [2% 70 380 550 610 122¢ 530 14%07;
mm linregr{x.v)
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ra =
0.BEDS

ans =
19,4702 -234.2857
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It can just as easily be vsed to fit the power model (Example 12.4) by applying the
Logl 0 function to the data as in

== linregr (logldix), logilivi)

-

Te =
0.9481
ans =
1.684Z2 -0.5620
3B
o
d o
B
25 B

o

1 1.2 1.4 1.6 1.8 2
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EhmeENeE A el s e e ]
% linregrix,v):

% Least gsguares it of & straight line to data

% oy scolving the normal equaticns.

% input:

% ¥* = independent variable

% v o= dependent variable

3 output:

% a = vector of slope, a(l), and intercept, af2}
% ¥2 = coefficient of determination

n = lengthix]:

if lengrthiy)-=n, error('x and ¥ must be same Iength'l: end
e e % convert to column veckbors

Sx = sumix): sy = sumfy);:

T e e e

ail) = {n#owy—ow*ay) fin*amidogunil] -

af2l = syw/n—alll*sx/n;:

r2 = {(n*axy=—ax* syt fggre (nYexZ=-ax"2) /agrt (n*ayd=sy™2] 172
% create plet of data and best fit line

Xp = linspace(minis)  maxix), 2}

vp = alli*xpra{2l;:

plok(x,v, ‘o', xp,. v}

grid on

FIGURE 12.12
An Mdbile o implement linear regrassion,

12.4.2 MATLAB Functions: - - - - and -

MATLARB has a buili-in function po v 16 that fits a least-squares nth-order polynomial 1o
data. Ir can be applied as in

mm o o= D{J‘ff"lt.[ PRI |

where - and - are the vectors of the independent and the dependent variables, respectively,
and - = the order of the polynomial. The function returns a vector - containing the poly-
nomial’s coefficients. We should note that it represents the polynomial wsing decreasing
powers of x as in the following representation:

Floy=pod" b pax™ e px + py

Because a straight line is a first-order polynomial, polviic (e, v, 10 will return the
slope and the intercept of the besi-fit siraight line.

== ¥ o= [10 20 30 40 50 60 70 201;
==y = [2% 70 280 550 610 1220 520 14507;
>3 4 = DDEVT;:'L-“’C-‘.-"J-‘.:'
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[= -
T9. 4702 -234 2857

Thus, the slope is 19.4702 and the intercept is —234 2857,
Another function, polvval, can then be used to compute a value using the coeffi-

cients, It has the general format;

== - o= polyvalil , -}

where - = the polynomial coefficients, and - = the best-fit value at - . For example,

== oy = polyval (&, 45)

*_rr =
418750
PROBLEMS
121 Given the data 12.5 The acceleration due to gravity at an altitude v above

8.8 0.5 9§ 9.4 10.0 the surface of the earth is given by

9.4 101 9.2 1.3 9.4 -
0.0 10.4 7.9 10.4 gg M 0 20000 AD000  &0000 BDOCO
9'3 9}' SI*;‘ ElE 1{3-'6 L, mfs? QBI00 97487 Q6EFR Q4278 Q56BZ
iR 9.5 96 0.2 89

Determine (a} the mean, (h) the standard deviation, (¢) vari-
ance, and {d) the coeflicient of vamation.

12,2 Construct a histogram from the data from Prob, 12,0,
Lse a range [rom 7.5 to 1.5 with intervals of 0.5,

12.3 Given the data

2865 2655 2665 2765 2735 2H35 2685
28,65 2965 2785 2705 2825 28R 2005
2765 2845 2865 2843 365 2635 2775
2925 2765 2865 2765 2855 2705 2705

Determine (a) the mean, (h) the standard deviation, (c) vari-
ance, and (d) the coefficient of variation, (e) Construct a his-
togram, Use a range from 20 to 32 with increments of (.5,
() Assuming that the distribution is normal and that vour
estimate of the standard deviation is valid, compute the
range (i.e., the lower and the wpper values) that encompasses
68% of the readings. Determine whether this is a valid esti-
mate for the data in this problem.

12.4 Using the same approach as was employed to derive
Eqgs. (12.15) and (12,16}, derive the least-squares fit of the
following model:

yo= gk e

That is, determine the slope that resolts in the least-squares
fit for a straight line with a zero intercept.

Use linear regression Lo compute g atl v = 55,000 m.

12.6 The following data was gathered to determine the rela-
tionship between pressure and temperature of a fixed vol-
ume of 1 kg of nitrogen. The volume is [0 m”.

"€ —0 4] 20 40
. N/m? S 500 8104 700 300
€ 50 70 100 120
s Nfm? F620 10,200 11,200 11,700

Employ the ideal gas law pV = nRT to determine £ on the
basis of this data. Mote that for the law, T must be expressed
in kelvins.

12.7 The data shown here was obtained from a creep test
performed at room lemperature on a wire composed of
M tin, 60% lead, and solid core solder. This was done by
measuring the increase in strain over time while a constant
load was applied to a test specimen. Using a linear regression
method, find (a) the equation of the line that best fits the data
and (b} the +* value. Plot vour results. Does the line pass
through the origin? That 1s, at time zero, should there be any
strain? If the line does not pass through the origin. force it to
do so. Does this new line represent the data trend? Suggest a
new equation that satisfies zero strain at zero time and also
represents the data tend well.
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) . (), Use the base-1{} version ro solve Prob, 12,10, In addi-
Time Strain Time Strain  yio, develop a formulation to relate 8, 1o As.
min Y min % 12.12 On average the surface area A of human beings is re-
00873 0000 5 aEG o ey lated o weight Woand height A, Measurements on a number
0.584 0130 £.089 0.aas  of individuals of height 180 cm and different weights (kg)
108a 0 ha0 a.5%0 0408 give values of A (m?) in the following table:
1585 0 184 00 0.431
2085 0204 SH 0,452 {kg) 70 75 77 B0 B B4 EF G0
2,580 0224 8.071 0474 - fm?) 20 212 215 230 222 323 226 200
3084 02532 8571 [N =y
J.587 0262 Q.02 Oals
A0R7 0,705 o 507 0 540 Show that a power law A = aW" fits these data reasonably
A 5B8 0 TeRa=L 0542 well. Evaluate the constants a and b, and predict what the
5088 0.342 surface area is for a 95-kg person.

125 Beyond the examples in Fig. 12,10, there are other
basic models that can be lincarized using transformations.
For example.

o= gy xe’

Linearize this model and use it to estimate o, and S, based
on the following data. Develop a plot of yvour fit along with
the data.

a1 0.2
075 1.25

0.4

O 05 . A
1.45 P

d 15 .
1.25 ¢85 055 0.35 028 0.8

129 Fit a power model to the data from Table 12,1, but use
natural logarithms to perform the transformations.

12,10 The concentration of £, coli bacteria in a swimming
area is monitored after a storm:

- (hr) 4 8 [ 14 20 24
(CFU/100 mL) 1590 1320 1000 Q00 450 540

The time is measured in hours following the end of the
storm, and the unit CFU s a “colony forming unit,”™ Use this
data to estimate {a) the concentration at the end of the storm
it =0} and (b} the time at which the concentration will reach
200 CFU/O0 miE. Note that your choice of model should
be consistent with the fact that negative concentrations are
impossible,

12,11 Rather than using the base-¢ exponential model
(Eq. 12.22), a common alternative is to use a base-10 model:

v o= g5 1057

When used for curve fitting, this equarion yields identical
results to the base-¢ version, but the value of the exponent
parameter (H:) will differ from that estimated with Eq. 12.22

12.13 Find a power law relationship between an animal’s
mass and its metabolism. The following table gives animals
masses in kg and metabolism rates in kealdd:

Animal Mass (kg) Metabolism (kcal/d)
Cow 200 5600
Human i 1700
Sheep &0 1100
Hen 2 100
Rt 0.3 30

12.14 The creep rate (£, the time rate ai which strain in-
creases) and stress data (o) shown here were also obtained
from the testing procedure described in Prob, 12,7, Using a
power law curve fit (& = Bo'), find the value of & and m.
Plot your results using a log-log scale,

Q.0004
5775

Creep rate, min '

0001 0.0031
Stress, MPa 2555

B.577 1

12.15 Itis a common practice when examining a fluid’s vis-
cous behavior 1o plot the shear rate (velocity gradienth:

E = 1
dy

on the abscissa versus shear stress (1) on the ordinate. When
a fluid has a steaight line behavior between these two vari-
ables, it is called a Newronian fluid, and the resulting rela-
tionship is

T =iy

where 0 is the fluid viscosity, Many common fluids follow
this behavior such as water, milk, and oil. Fluids that do not
behave in this way are called non-Newtonian, Some exam-
ples of non-Newtonian fluids are (see Fig. P12, 15}
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Shear stress (1)

Shear strain (3]

FIGURE P12.15

For Bingham plastics, there is 4 yield stress 1, that must
be overcome before flow will begin:

T =T+ uy

A common example is toothpaste.

For psendoplastics, the shear stess is raised 10 the
power i

T o=

Comimon examples are yogurl and shampoao.

The tollowing data shows the relationship between the
shear stress 7 and the shear steain rate y for a Bingham plas-
tic fluid. The yield stress 1, is the amount of stress that must
be exceeded belore flow begins, Find the viscosity p (slopel,
T, and the # using a regression method,

Stress, N/m? 357 8% 494 567 413
Shear strain rafe -, 1/5 | z 3 4 5

12.16 The relationship berween stress © and the shear sirain
rate 3 for a psevdoplastic fluid (see Prob, 12.13) can be ex-
pressed by the equation © = pep”. The following data comes
from a 0.5% hyvdroxethyleellulose in water solution, Using a
power law fit, find the values of p and n:

Shear strain
rate , 1/s 50 ] 0 1o 130
Shear stress ., N/m? 500 745 836 509 10725
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General Linear Least-Squares and
Nonlinear Regression

4 CHAPTER OBJECTIVES

This chapter takes the concept of fitting a straight line and extends it to () fitting a
polynomial and () fitting a variable that is a linear function of two or more independent
variables. We will then show how such applications can be generalized and applied to a
broader group of problems. Finally, we will show how optimization techniques can be
used to implement nonlinear regression. Specific objectives and topics covered are

Knowing how to implement polynomial regression.

Knowing how to implement multiple linear regression.

Understanding the formulation of the general linear least-squares model.
Understanding how the general linear least-squares model can be solved on
MATLAB with either the normal equations or with left division.

*  Understanding how to implement nonlinear regression with optimization
techniques.

13.1 POLYNOMIAL REGRESSION

In Chap.12, a procedure was developed to derive the equation of a straight line using the
least-squares criterion. Some data, although exhibiting a marked pattern such as scen in
Fig. 13.1, is poorly represented by a straight fine. For these cases, a curve would be better
suited to fit the data. As discussed in Chap. 12, one method to accomplish this objective 15
to use transformations, Another alternative is to fit polynomials to the data vsing pelvie-
mial regression.

The least-squares procedure can be readily extended to it the data 1o a higher-order
polynomial. For example, suppose that we Iit a second-order polynomial or quadratic:

Ve=dp+ax Faart +e (13.1)
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Vi 28
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FIGIJRE 13.1
'f]|" ';'Ifl' 1% || s l_‘fj }5‘5 FERar st ?'..':'._i.']'[ﬂ:. '-‘_‘E’_]!(‘fu.:,-i'.'.'fl | I ||II:'. COARON ':'Ifl' 1 [_.‘."55 f_]:{'l-'} 15

. . .,
5 = 2,,{-"' —dp ~ ayx; ~ axx’) (13.2)

To generate the least-squares fit, we take the derivative of Eq. (13.2) with respect to
each of the unknown coefficients of the polynomial. as in

5, — ¥,
— = =2 2“ (vi —ag —ayx; — a2y )

ejfh:.

a5 e .

— = 6 v — ag — anx; — arx])

|]ff|

a8 e S .
s | ai . . LB
= -2 x{v, —ay — ayx; — daxr)

. gt 7

These equations can be set equal to zero and rearranged to develop the following set of nor-
mal equations:

o+ (S5 + (S ) ar = T
{E'I"']'”U+(L H|+{>_, J’f! Ll‘l.



| Chapra: Appliad Numerical | 13. General Linear Taxt 5 Tha MR-l

Mathods with MATLAB for  Least-Squares and Campanas, 2004

Engineers and Sci Nonli Regressi
13,1 POLYNOMIAL REGRESSION 223
where all summations are from i = 1 through n. Note that the preceding three equations are

EXAMPLE 13.1

linear and have three unknowns: gy, ¢y, and d2. The coefficients of the unknowns can be
calcalated directly from the observed dara.

For this case, we see that the problem of determining a least-squares second-order
polynomial is equivalent to solving a system of three simultaneous linear equations. The
two-dimensional case can be easily extended to an mth-order polynomial as in

V=dy+ X +daxt e agx” +e

The foregoing analysis can be easily extended to this more general case. Thus, we can
recognize that determining the coefficients of an mth-order polynomial is equivalent to
solving a system of m -+ | simultaneous linear equations. For this case, the standard error
is formulated as

/ S
L . — 13.3
gl ‘il'lu—(m-r-ﬂ (33

This quantity is divided by n — (m -+ 1) because (m + 1} data-derived coetficients—
iy e e e dy—were used to compute S thus, we have lost m + 1 degrees of freedom. In
addition to the standard error, a coefficient of determination can also be computed for poly-
nomial regression with Eq. (12.20).

Polynomial Regression

Problem Statement.  Fit a second-order polynomial to the data in the first two columns
of Table 13.1.

TABLE 13.1 Compuiations for an error analysis of the quadratic leastsquares fit,

IR e R R R 1)2
0 21 544,44 014332
£ 1447 IO0284
2 3.4 140003 108160
3 272 312 080487
<1 409 23922 D625
3 =1 127211 02434
r PhE4 251339 354657

Solution.  The following can be computed from the data:

m=2 S =15 Sixl =079
n== Yow = 1526 3 xvy = 585.6
T=25 YxP =55 S xltw = 24888
v=25433 Y af=1225
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Therefore, the simulianeous linear equations are

6 15 53 dp 152.6
|: 15 35 225} {n‘t] } =3 3836 }
35 0225 9790 \an 2488.8

These equations can be solved to evaluate the coeflicients. For example, using MATLAB:

== M = [6 15 55;15 55 225;35 225 579]1;
»» T = {15%2.6 S85.6 2488.8];
== 4 = N\

a =
2.47R6
2.3593
1.8607
Therefore, the least-squares quadratic equation for this case is
v = 2.4786 + 2.3593x + 1.8607x"

The standard error of the estimate based on the regression polynomial is [Eq, (13.3)]

[ 374657
Syiy = 7=1.|1?5
it 6— 2+ 1)

The coefficient of determination is

2 2513.30 — 3.74657
- 2513.39

and the correlation coefficient is r = (,99925,

= 0.99851

FIGURE 13.2
Fit of o secondoder polynomial,

3

&0 —
Least-squares
parabola
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These results indicate that 99,851 percent of the original uncertainty has been explained
by the model. This result supports the conclusion that the quadratic equation represents an
excellent fit, as is also evident from Fig, 13.2,

13.2

MULTIPLE LINEAR REGRESSION

Another useful extension of linear regression is the case where v is a linear function of two
or more independent variables. For example, v might be a lincar function of x, and x,, as in

V=g +dy X +day T e

Such an equation is particularly useful when fitting experimental data where the variable
being studied 1s often a function of two other variables, For this two-dimensional case, the
regression “line” becomes a “plane”™ (Fig. 13.3).

As with the previous cases, the “best”™ values of the coefficiems are determined by for-
mulating the sum of the squares of the residuals:

i
S = Z (¥ = g — @y - Htxz,:'lz (13.4)
i=1
and differentiating with respect to each of the unknown coefficients:

% = —22 (¥ — do — X — daXay)

:j: = =23 " xiilyi — do — @rxn — a2x)

% = =2 xai(y — g~ arxy; — arva)
FIGURE 13.3

Graphical depiclion of mulliple linear regression where v is o linear lunction of x, and x,.
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The coefficients vielding the minimum sum of the squares of the residuals are obtained by
setting the partial derivatives equal to zero and expressing the result in matrix form as
n Z -'-'L.r‘ Z Ko iy E ¥i
hIETNEED DS D DS TNE ! {u; } = { Ex;_g,v.-} {13.5)
Yo Yanxn Y3, ap pRESTL"
EXAMPLE 13.2  Multiple Linear Regression

Problem Statement, The following data was calculated from the equation v =5+
dxy — Jxa

o 0 5
Z 1 10
2.3 i o
1 3 o
4 & 3
7 2 27

Use multiple linear regression to fit this data.

Solution.  The summations required to develop Eq, (13.5) are computed in Table 13.2.
Substituting them into Eq. {13.5) gives

[ 16,5 14 dq 54
|: 16,5 7425 48:] {ﬁ; } = {QdJ.S} {(13.00
14 48 54 i 100

which can bhe solved tor
ap=5 a1 =4 a2 = —3

which is consistent with the original equation from which the data was derived.

The foregoing two-dimensional case can be easily extended to m dimensions. as in

Y =dp+ Xy b dzxn b dpXy e

TABLE 13.2 Computations required to develop the normal equations for Example 13.2.

1 3 , f , i 12 -
5 a o 0 0 0 0 0
10 2 ] 4 ] Z i 10
o 2.5 2 625 4 5 22.5 18
o 1 3 ] " 3 O 0
3 4 ) 1é 3 24 12 ]
7 7 2 49 4 14 189 54
54 145 14 Jh 25 54 48 2435 100
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13.3

where the standard ervor 1s formulated as

) = SF‘
TN —m+ D

and the coefficient of determination is computed as in Eq. (12.20).

Aldthough there may be certain cases where a variable is linearly related (o two or more
other variables, multiple linear regression has additional utility in the derivation of power
equations of the general form

Vo= g ey e e

Such equations are extremely useful when fitting experimental data. To use multiple linear
regression, the equation is transformaed by taking its logarithm to yield

logv =logay +a logx) +azloge + - +aylogyy

GENERAL LINEAR LEAST SQUARES

In the preceding pages, we have introduced three types of regression: simple linear, poly-
nomial, and multiple linear. In fact, all three belong to the following general linear least-
squares model:

v=adpipt+aiiy it Hdpin T (13.7)

where zp, 21, ..., 2 are s + | basis functions. It can easily be scen how simple linear
and multiple linear regression Tall within this model—that 18, zp = 1,21 = ¥, 2 =
X2, oovy Ty = X Further, polynomial regression is also included if the basis functions are
simple monomials asinzop = Loy = x 20 = x7 .. .o = 27,

Note that the terminology “linear” refers only to the model’s dependence on irs
parameters—ithat is, the a's, As in the case of polynomial regression, the functions them-

sglves can be highly nonlinear, For example, the 2's can be sinusoids, as in
Vo= dly + oy Cos{mr) 4 gz sinfax )

Such a format is the basis of Fourier analysis.
On the other hand. a simple-looking model such as

v =ayl(l —e ™)

is truly nonlinear because it cannot be manipulated into the format of Eq. (13.7).
Equation (13.7) can be expressed in matrix notation as

¥} = 1Z]){a} + {e} (13.8)

where [Z] 15 a matrix of the calcolated values of the basis functions at the measured values
of the independent variables:

P13 S § IS

P S B

£l =

S Eim ttt Zmm
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where m is the number of variables in the model and n is the number of data points. Be-
cause 1 = m 4+ 1, you should recognize that most of the time, [£] is not a square matrix.
The column vector | v} contains the observed values of the dependent variable:
W=1ln » -yl
The column vector {a) contains the unknown coefficients:
@l =lay ar -+ dul
and the column vector e} contains the residuals:
e}t =ler ex -+ ey
The sum of the squares of the residuals for this model can be defined as
L L B
o= (Fr‘ - Zﬂjz;s) (139)
imn] Sl
This guantity can be minimized by taking its partial derivative with respect to each of the
coefficients and serting the resulting equation equal to zero. The outcome of this process is
the normal equations that can be expressed concisely in matrix form as
MZ) [Z1Ha} = (121" (¥} (13.10)
It can be shown that Eqg. (13,10} is, in fact. equivalent to the normal equations developed
previously for simple linear, polynomial, and multiple linear regression.
The coefficient of determination and the standard error can also be formulated in terms
of matrix algebra. Recall that r? is defined as
2 Sf - Sr S,—
re = - =1-—
5 8
Substituting the definitions of §, and §, gives
=1 E[.‘:f - .'Ef't'z
Yolv — w)?
where v = the prediction of the least-squares fit. The residuals between the best fit curve
and the data, y; — ¥. can be expressed in vector form as
(vi—[£)ial
Matrix algebra can then be used to manipulate this vector to compute both the coetficient of
determination and the standard ervor of the estimate as illustrated in the following example.
EXAMPLE 13.3  Polynomial Regression with MATLAB

Problem Statement.  Repeat Example 13,1, but use matrix operations as described in this
section.

Sclution.  Firgt, enter the data to be fit
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Next, create the [Z] matrix;

== T o= [onesisizeixl) x x."2]
1 8] {
1 1 1
1 2 4
1 3 4
1 4 16
1 5 25

We can verify that [ Z]7 [Z] results in the coefficient matrix for the normal equations:

sm SYE

on
LAoon

-1 [a

[

2
9

We can solve for the coefficients of the least-squares quadratic by implementing
Eq. (13.10):

Sm A = (ATERNL (D Wy
ans =

2.4T786

2.35%3

1.8607

In order 10 compute r* and §ypx, first compute the sum of the squares of the residuals:
== 81 = sumf{v-L*¥al . "2

-

.l .
Sr o=

3,746

[+2]

3
Then #= can be computed as
=x rad = l-Srisumiiyv-meani(y)). "2}

ri =
0.9498%

and sy, can be computed as
== ByX = sqri(2r/ilengthix) -lengthialll

VR =
L.117%

Qur primary motivation for the foregoing has been to illustrate the unity among the
three approaches and (o show how they can all be expressed simply in the same mairix no-
tation. It also sets the stage for the next section where we will gain some insights into the
preferred strategies for solving Eq. (13.10). The matrix notation will also have relevance
when we turn 10 nonlingar regression in Section 13.5.
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13.4

EXAMPLE 13.4

QR FACTORIZATION AND THE BACKSLASH OPERATOR

Generating a best fit by solving the normal equations is widely used and certainly adequale
for many curve-fitting applications in engineering and science. It must be mentioned, how-
ever, that the normal equations can be ill-conditioned and hence sensitive to round-off
CETOTS,

Two more advanced methods, OR fuctorization and singular value decomposition, are
more robust in this regard. Although the description of these methods is beyvond the scope
of this text, we mention them here becaonse they can be implemented with MATLAB.

Further, QR factorization is automatically used in two simple ways within MATLAB,
First, for cases where you want to fit a polyvnomial, the built-in poly fic function auto-
matically uses QR Tactorization 1o obtain its results,

Second, the general linear least squares problem can be directly solved with the back-
slash operator, Recall that the general model is formulated as Eq. (13.8)

vl = [Z]ia]

In Section 9.4, we used left division with the backslash operator to solve systems of linear al-
gehraic equations where the number of equations equals the number of unknowns (n = m}.
For Eg. (13.8) as derived from general least squares, the number of equations is greater than
the number of unknowns (= m). Such systems are said to be overdetermined. When
MATLAR senses that you want 1o solve such systems with left division, it automatically uses
QR factorization to obtain the solution, The following example illustrates how this is done,

(13.11)

Implementing Polynomial Regression with no1v£:+ and Left Division

Problem Statement. Repeat Example 13.3, but use the built-in poly © it function and
left division to calculate the coefficients,

Solution.  As in Example 13.3, the data can be entered and used to create the [Z] matrix
as in

=» 3 = [001 2 34 5]

=2y = [Z2.1 7.7 13,6 27.2 40.% 61.1717;

== & = {onesigcizelx)) x x.°2];

The poly it function can be used to compute the coefficients:

=2 84 = polyEicix,v.2)

a =
1.8607 A.3581 24786
The same result can also be calculated using the backslash:
=>4 = Z\y
a =
2.ATEG
2.3583
1.8607

As just stated, both these results are obtained automatically with QR factorization,
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13.5

EXAMPLE 13.4

NONLINEAR REGRESSION

There are many cases in engineering and science where nonlinear models must be it 1o
data. In the present context, these models are defined as those that have a nonlinear depen-
dence on their parameters. For example,

v=agll —e ™y 4 {13.12)

This equation cannot be manipulated so that it conforms to the general form of Eq. (13.7).

As with linear least squares, nonlinear regression is based on determining the values
of the parameters that minimize the sum of the squares of the residuals. However, for the
nonlinear case, the solution must proceed in an iterative fashion.

There are technigues expressly designed for nonlinear regression. For example, the
Gauss-Newton method uses a Taylor series expansion o express the original nonlinear
cquation in an approximate, lincar form. Then least-squares theory can be used to obtain
new estimates of the parameters that move in the direction of minimizing the residual. De-
tails on this approach are provided elsewhere (Chapra and Canale, 2002).

An alternative is 1o use optimization technigues o directly determine the least-squares
fit. For example, Eq. (13.12) can be expressed as an objective function to compute the sum
of the squares:

M
Flag ayy = [y —ap(l — e )] (13.13)
1=l
An optimization routine can then be used to determine the values of ay and a; that mini-
mize the function,
MATLAB's fminsearch function can be used for this purpose, It has the general
sy ntax

(e --- -1 = fminsearchi- - - - om0 s )

where - = a vector of the values of the parameters that minimize the function - ceeeom=
the value of the function at the minimum, - - = a vector of the initial guesses for the para-
meters, - - - - - - - = a structure cnnlaining values of the optimization parameters as created
with the cptimser function (recall Section 6.4), and - - . - - |, etc. = additional arguments
that are passed to the objective function, Note that if - - - - - - - is omitted, MATLARB uses
default values that are reasonable for most problems. If vou would like to pass additional ar-
guments (- -, - -,...), butdonot want tosetthe - - - - - - - , use empty brackets [ ] as a place
holder.

Nonlinear Regression with MATLAB

Problem Statement.  Recall that in Example 12.4, we fit the power model to data from
Table 12.1 by linearization using logarithms. This vielded the model:

F=0.2741p""

Repeat this exercise, but use nonlinear regression. Employ initial guesses of 1 for the
coefficients,



| Chapra: Appliad Numerical | 13. General Linear Taxt 5 Tha MR-l
Mathods with MATLAB for  Least-Squares and Campanas, 2004

Engineers and Sci

232

&g

GEMNERAL LINEAR LEAST-5QUARES AND NOMNLINEAR REGRESSION

Solution.  First, an M-file function must be created to compute the sum of the squares.
The following file, called 2558 m, is set up for the power equation:

function £ = f£33R{a,xm,vm}

vo o= al{ll*xm,.~ai2l;

£ = sumi (yvm-vp! . 2);

In command mode, the data can be entered as

== ¥ = {10 20 30 40 50 &% 70 8071:
= oy o= [E% U0 380 550 810 1220 830 14807,

The minimization of the function is then implemented by
== Iminsearch(@Issr, [1., 11. [1. x. ¥}
Arns =
2.5384 1.43549
The besi-fit model is therefore
F o= 25384y

Both the original transformed it and the present version are displayed in Fig, 13.4.
Note that although the model coefficients are very different. it is difficult to judge which it
is superior based on inspection of the plot.

This example illustrates how different best-fit equations result when fitting the same
model using nonlinear regression versus linear regression emploving transformations. This
is because the former minimizes the residoals of the original data whereas the latter mini-
mizes the residuals of the transformed data.

FIGURE 13.4
Compaorison of rarsformed and ustronsformed mode! Fits for force versus velocity data from

Table 12.1.

1200

400
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13.1 Fit a parabola to the data from Table 12,1, Determine
the »* for the fit and comment on the efficacy of the result.,
132 Using the same approach as was employed to derive
Egs. (12.15) and (12.16). derive the least-squares fit of the
following model;

.
V=Y b daxT e

That is, determine the coefficients that results in the least-
squares [it for a second-order polynomial with a zero inter-
cept. Test the approach by using it to fit the data from
Table 12.1.

13.3 Fit a cubic polynomial to the following data;

3 4 5 7 B o 11 12
1.4 34 44 34 22 28 38 48

Along with the coefficients, defermine v~ and 5.+,

134 Develop an M-lile 1o implement polynomial regres-
sion, Pass the M-file two vectors holding the x and v values
along with the desired order mi. Test it by solving Prob. 13,3,
13.5 For the data from Table P13.5, vse polynomial regres-
sion to derive a predictive equation Tor dissolved oxveen
concentration as a function of temperature for the case
where the chloride concentration is equal to zero, Employ a
palynomial that is of sufficiently high order that the predic-
tions match the number of significant digits displaved in the
table.

13.6 Use multiple Hnear regression to derive a predictive

equation for dissolved oxygen concentration as a function of

TABLE P13.5 Dissolved oxygen concentratfion in
water as o function of temperature
("C) and chloride concentration (g/1).

Dissolved Oxygen (mg/L) for
Temperature (“C) and Concentration

of Chloride (g/L)

A 0g/L 10 g/L 20g/L
o 4.4 129 11.4

5 28 1.3 10.2

10 1.3 3l 854
15 100 2.03 q.08
20 .09 817 755
25 B.24 - ta 6.3
30 756 6.85 65.20

temperature and chloride based on the data from Table P13.5,
Use the equation to estimate the concentration of dissofved
oxygen for a chloride concentration of 15 2/Lat T = 12 °C.
INote that the true value is 9.09 mg/L. Compure the percent
relative error for vour prediction. Explain possible canses for
the discrepancy.

137 As compared with the models from Probs, 13.5 and
13.6, a somewhat more sophisticated model that accounts
for the effect of both temperature and chloride on dissolved
oxygen saturation can be hypothesized as being of the form

0= f:(1)+ filc)

That is, a third-order polynomial in temperature and a lincar
relationship in chloride is assumed to vield superior resulis,
Use the general linear least-squares approach o fit this
model to the data in Table P13.5. Use the resulting equation
to estimate the dissolved oxygen concentration for a chloride
concentration of 15 g/l at 7 = 12"C. Note that the wue
value is 909 mg/L. Compute the percent relative error for
your prediction.

138 Use moltiple linear regression to fit

L0t 1 zo2 3 3 4 4
S T R S T S R 2
i50 179 127 256 205 351 297 454 402

Compute the coefficients, the standard error of the estimate,
and the correlation coefficient.

139 The following dara was collected for the steady flow of
water ina concrete circular pipe:

Experiment Diameter, m Slope, m/m Flow, m/s

] 0.3 0001 004
2 O 002 024
3 0= CL00 ol
4 c.3 ot 01z
5 0. .01 082
8] 09 0o 2.38
7 0.3 L0s 031
8 (0] 005 1.95
g 0= 05 S06

Use multiple linear regression to fit the following model to
this data:

0 = o D 5

where 0 = flow, D = diameter, and § = slope.
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13.10 Three disease-carrying organisms decay exponen-
tially in seawater according to the following model:

pity = Ae 7 4 BN MW

Estimate the initial concentration of each organism (A, B,
and ) given the following measurements:

05 1 2 3 4 5 & 7 8 09
S AT N R

1511 The following model is used to represent the effect of
solar radiation on the photosynthesis rate of aquatic plants:

oy
¢ Tl

I
r=F,
I.‘{'l'f

where P = the photosynthesis rate (mg m~*d""). P,, = the
maximum  photosynthesis rate (mg m™ d™Yy, = solar
radiation (uEm s Yy, and 1., = optimal solar radiation
(nk m~ s~y Use nonlinear regression to evaluate £y, and
I, based on the following data:

S0 B0 130 200 230
G V7 202 248 229

350 450 550 FOO0
216 173 142 72

1312 In Prob. [2.8 we used transformations to hneanze
and fit the following model:

¥ o= argrel

Use nonlinear regression o estimate ey and 4 based on the
following data. Develop a plot of your fit along with the data.

o1 02
073 1.25

4 04
|45

0% 1.3 15 17 1.8
.25 Q.85 055 Q35 028 018

13.13 Enzymatic reactions are used extensively to charac-
terize biologically mediated reactions. The following is an
example of a model that is used o fit such reactions:
k| ST’

v = —1:|

K +[5]
where v, = the initial rate of the reaction (M/s), [5] = the
substrate concentration (M), and £, and K are parameters.
The following data can be fit with this model:

[ -M o Mfs
001 G078 x 10
0.05 7595 w10
0.1 063« 107"
0.5 5758 = 1070
; 1735w 100
5 2.423 1077
o 2.450 = 10

50 2431 = 100

100 Z2.431 w 10

{a} Use atransformation to linearize the model and evaluate
the parameters, Display the data and the model fit on a
graph,

{h) Perform the same evaluation as i (a) but use nonhinear
regression,
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Interpolation

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce yvou to polvnomial
interpolation. Specific objectives and topics covered are

®*  Recognizing that evaluating polynomial coefficients with simultaneous
equations is an ill-conditioned problem.

*  Knowing how to evaluate polynomial coefficients and interpolate with
MATLABs polvfitc and nolvwval functions.
Knowing how to perform an interpolation with Newlon’s polynomial.
Knowing how to perform an interpolation with a Lagrange polynomial.
Knowing how to solve an inverse interpolation problem by recasting it as a
roots problem.
Appreciating the dangers of extrapolation.
Recognizing that higher-order polynomials can manifest large oscillations.

YOU'VE GOT A PROBLEM

fwe want to improve the velocity prediction for the free-falling bungee jumper. we might

expand our model to account for other factors beyond mass and the drag coefficient. For

example, the drag coefficient can itself be formulated as a function of ather factors such
as the area of the jumper and characteristics such as the air’s density and viscosity.

Air density and viscosity are commonly presented in tabular form as a function of
temperature, For example, Table 14,1 is reprinted from a popular fluid mechanics textbook
(White, 1999).

Suppose that you desired the density at a temperature not included in the table, In such
a case, you would have to interpolate. That 15, you would have to estimate the value at the

235
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14.1

TABLE 14.1 Density (0], dynamic viscasity (i}, and kinematic viscosity (v} as a function of
temperature |- ) of 1 atm as reported by White {1999,

B o, kg/m? p, N-s/m? v, m3fs
—40 1.52 1.5% = 10°° 099 5 1070
0 1.29 171 = 1 1.33 % 1070
20 1.720 180 = 1077 150 100
50 1.00 1,55 = 1070 175w 1075
! 0,544 217 = 1077 730w 10
150 {.835 238 = 1070 785 % 1070
200 0.746 2.57 % 1075 3.45 w 100
250 0675 275 % 1070 408 = 1070
300 0618 2.93 % 1077 475 % 1070
400 .525 3,25 % 1070 .20 s 100
500 .457 3.55 % 10°° AT w100

desired wemperature based on the densities that bracket it, The simplest approach is wo de-
termine the equation for the straight line connecting the two adjacent values and vse this
cguation o estimate the density at the desired imermediate temperature. Although such
linear interpolation is perfectly adequate in many cases, error can be intoduced when the
data exhibits significant curvature. In this chapter, we will explore a number of differemt
approaches for obtaiming adequate estimates for such situations.

INTRODUCTION TO INTERPOLATION

You will Frequently have occasion Lo estimate intermediate values between precise data
points. The most common method wsed for this purpose 1s polynomial interpolation. The
general formula for an (1 — 1ith-order polynomial can be written as

T =y +ax +awx” + - Fapr! (14.1)

For n data points. there is one and only one polynomial of order (n — 1) that passes through
all the points. For example, there is only one straight line (i.c., a first-order polynomial)y
that connects two points (Fig. 14.1a). Similarly, only one parabola connects a set of three
points (Fig. 14.1b). Polvaomial interpolarion consists of determining the unique (1 — 1)th-
order polynomial that fits »# data points, This polynomial then provides a formula to
compute intermediate values.

Before proceeding. we should note that MATLAB represents polynomial coefficients
in a different manner than Eq. (14.1). Rather than using increasing powers of x, it uses de-
Creasing powers as in

flx)r= Pl-tn_l + PZXH_E A Pua X by (14.2)

To be consistent with MATLAB. we will adopt this scheme in the following section.
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FIGURE 14.1

F.xr;mp?r:s of th:_?l;xﬂuﬁng p(_)|ynurr1iq§5; i 1 firskorden ||in|;_:U|| conneching hao peaints,

I | second-crder [quudrmit_'. o parabolic) connacting thres peings, unr_]]{- 1 thirdkordes deubic!
connacting four points,

14.1.1 Determining Polynomial Coefficients

A straightforward way for computing the coefficiems of Eq. (14.2) is based on the fact that
n data points are required 1o determine the n coefficients. As in the following example, this
allows us to generate x linear algebraic equations that we can solve simultaneously for the
coefficiens,

EXAMPLE 14.1  Determining Polynomial Coefficients with Simultanecus Equations

Problem Siatement.  Suppose that we want to determine the coefficients of the parabola,
Flx) = p1x® + pax + p3, that passes through the last three density values from Table 14.1:

Xy =300 Firv)=0616
X2 =400  flxz) = 0.525
Xy =500 fla) = 0457
Each of these pairs can be substituted into Eq. (14.2) to yvield a system of three equations:
0.616 = pi(300)° + p2(300) + ps
0.525 = p(400)" + p2(400) + ps
0.457 = py(500)° 4 p2(500) +

or in matrix form:

90,000 300 1 il (.616
160,000 400 1 P2 =y 0L525
250,000 500 1 P 0.457

Thus, the problem reduces to solving three simultancous linear algebraic equations for
the three unknown coefficients. A simple MATLAB session can be used to obtain the
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solution;

=» format long

=x A = [80000 200 1;160000 400 1;250000 %00 1];
== b = [0.616 0,525 G.457]

e opo= AMD

0.O0000L150G0000
-0 01T 000G0000
1.02700000000000

Thus, the parabola that passes exactly through the three points is
) = 0.00000115x% — 0.001715x + 1.027

This polynomial then provides a means to determine intermediate points, For example. the
value of density al a temperature of 350 °C can be calculated as

F(350) = 0.000001 153500 — 0.001715(350) + 1.027 = 0.567625

Although the approach in Example 14,1 provides an easy way to perform interpola-
tion, it has a serious deficiency. To understand this flaw, notice that the coefficient matrix
in Example 14.1 has a decided struciure. This can be seen clearly by expressing it in gen-
eral terms:

o 1 (py S
x5 oar L yp =1 flx) (14.3)
xox 1l U; flx)

Coefficient matrices of this form are referred w as Vandermonde marrices. Such ma-
trices are very ill-conditioned. That is, their solutions are very sensitive w round-ofT errors,
This can be iltustrated by using MATLAB to compute the condition number for the coeffi-
cient matrix from Example 14,1 as

== cond{a)

ans =
5.8%32e+000

This condition number, which is guite large for a3 = 3 matrix, implies that about six digits
of the solution would be gquestionable, The ill-conditioning becomes even worse as the
number of simuliancous equations becomes larger,

As a consequence, there are allernative approaches that do not manifest this shoricom-
ing. In this chapter, we will also describe two alternatives that are well-suited Tor compuier
implementation; the Newton and the Lagrange polynomials. Before doing this, however,
we will first briefly review how the coefficients of the interpolating polynomial can be
estimated directly with MATLAB s built-in functions,
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14.1.2 MATLAB Functions: and

14.2

Recall from Section 12.4.2, that the polvfit function can be used to perform polynomial
regression. In such applications, the nomber of data points is greater than the number of
coefficients being estimated. Consequently. the least-squares fit line does not necessarily
pass through any of the points, but rather follows the general trend of the data.

For the case where the number of data points equals the number of coefficients, poly-
fit performs interpolation. That is. it returns the coefficients of the polynomial that pass
directly through the data points. For example. it can be used to determine the coefficients
of the parabola that passes through the last three density values from Tahle 14.1:

»=» format long
== T = [300 400 5007 ;
== density = [O.6lé O0.52% (0.45%77;

== o= polyiit (T,density, 2]

P =
0.00000115000000  -0.00171500000000 1.02700000000000

We can then use the polyval function to perform an interpolation as in
== d = polyval (p, 350}
d -
0.567T62500000000

These results are the same as those obtained previously in Example 14,1 with simultancous
cquations,

NEWTON INTERPOLATING POLYNOMIAL

There are a variety of alternative forms for expressing an interpolating polynomial beyond
the familiar format of Eq. ( 14.2). Newton's divided-difference interpolating polynomial is
among the most popular and vseful forms. Before presenting the general equation, we will
introduce the first- and second-order versions because of their simple visual interpretation.

14.2.1 Linear Interpolation

The simplest form of interpolation is to connect two data points with a straight line. This
technique, called linear inferpolarion, 1s depicted graphically in Fig. [4.2. Using similar
triangles,

Nitw) — fleg Sl — flg)

(14.4)
X — X X2 —.X
which can be rearranged to vield
. Tl = fixp
hixy= flx) + —f{.r — X} (14.5)

A — X

which is the Newron linear-interpolation formula. The notation fi{x) designates that this
is a first-order interpolating polynomial. Notice that besides representing the slope of the
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EXAMPLE 14.2

Flans

Jiash

fi

Foeg

i LR R
L R R R R
e

L e

1

FIGURE 14.2
Gruphi{;u| du;:pi{;‘.ion of fnear inter po‘.uﬁc;nn Thez sherdad arecas indicate the similay 1?iung|c.s used
to derive the Newton linearinkerpolation formula [Fa, {14.5)],

line connecting the points, the term [ f{xz) — flxy}]/{x; — xy)is afinite-divided-difference
approximation of the first derivative [recall Eq. {4.20}]. In general, the smaller the interval
between the data points, the better the approximation. This is due to the fact that, as the
interval decreases, a continuous function will be better approximated by a straight line,
This characteristic is demonstrated in the following example.

Linear Interpolation

Problem Statement.  Estimate the natural logarithm of 2 using linear interpolation. First,
perform the computation by interpolating between In 1 = 0 and In 6 = 1.791759. Then,
repeat the procedure, but use a smaller interval from In | to In 4 {1.386294). Note that the
true value of In 2 is 0.6931472.

Solution.  Weuse Eq. (14.5) from x; = | to x2 = 6 to give

L791759 — 0
H2y=0+ 9:5—]{2 - 1} = 03583519

which represents an error of £, = 48.3%. Using the smaller interval from x; = T oy =4
yields
1386204 — ()

HiZy =0+ ?(2 = 1} = 0.4620981
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ftx)
e _HJ..} =In X

1 True
filx)
i Linear estimates
0 Ll I Ly
0 5 x

FIGURE 14.3
fwa linsar inferpolations to estimate In 2. MNote how the smaller inlerval provides o better
aslimate.

Thus, using the shorter interval reduces the percent relative error to & = 33.3%. Both
interpolations are shown in Fig. 14.3, along with the true function,

14.2.2 Quadratic Interpolation

The error in Example 14.2 resulted from approximating a curve with a straight line. Con-
sequently. a strategy for improving the estimate is to introduce some curvature into the line
connecting the points. If three data points are available, this can be accomplished with a
second-order polynomial (also called a quadratic polynomial or a parabola). A particularly
convenient form for this purpose is

Salx) = by + balx — x1) 4 byl — x){x —x) (14.6)

A simple procedure can be used to determine the values of the coefficients. For by,
Eq. (14.6) with x = x; can be used to compute

by = flx) (14.7)

Equation (14.7) can be substituted into Eg. (14.6). which can be evaluated at x = x; for
_ Jla) — flx)
Xr— X
Finally, Eqgs. (14.7) and (14.8) can be substituted into Eq. { 14.6), which can be evaluated at
X = x; and solved (after some algebraic manipulations) for
Jixg) — fix) 3 Sl — fixg)
hy = Y3 — A I |
A3 =X

.’)1

(148}

(14.9)
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EXAMPLE 14.3

Notice that, as was the case with linear interpolation, b still represents the slope of the
line connecting points ¥y and xa. Thus, the first two terms of Eq. (14.6) are equivalent 1o
lingar interpolation between v, and x,, as specified previously in Eq. (14.5). The last term,
b — X3y — xa), introduces the second-order curvature into the formula,

Before illustrating how 1o use Eg. (14.6), we should examine the form of the coeffi-
cient by It is very similar 1o the finite-divided-difference approximation of the second de-
rivative introduced previously in Eq. (4.27), Thus, Eq. (14.6) is beginning to manifest a
structure that is very similar to the Taylor series expansion. That is, terms are added se-
quentially to capture increasingly higher-order curvature,

Quadratic Inferpolation

Problem Statement.  Employ a second-order Newton polynomial to estimate In 2 with
the same three points used in Example 14.2:

X =1 f{,t]}:{'_}
X =4 Fix2) = 1386294
xy=~0 Flxsy = 1791759

Selution.  Applying Eq. (14.7) vields

fij =1)
Equation (14.8) gives
1.386294 — 0
= = (462095 |
41
FIGURE 14.4 _ _
The use of quadratic interpolation to estimate In 2. The finsor interpalation fram - = 1 o 4 is

also included tor comparison,

Fixid
2 En
1 |
B Quadratic estimate
b Linsar estimate
o | | | | |
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and Eq. (14.9) yields
— 7
I.‘?FJI?S: ;.386*94 0.462008]

= - = —0.0518731

Substituting these values into Eq. (14.6) yields the quadratic formula
Jrixr =0+ 04620981y — 1) — 00518731 {x — IMx —4)

which can be evaluated at ¥ =2 for f2(2) = 0.5658444, which represents a relative
error of & = 18.4%. Thus, the curvature introduced by the quadratic formula (Fig. 14.4)
improves the interpolation compared with the result obtained using straight lines in
Example 14.2 and Fig. 14.3.

14.2.3 General Form of Newton’s interpolating Polynomials

The preceding analysis can be generalized to fit an (7 — 1)th-order polynomial to n data
points. The (n — [)th-order pelynomial is

Joxd=by 4+ by — x4 - F byl —xy iy —x2) - - — xup) (14,100
As was done previously with linear and quadratic interpolation, data points can be used to
evaluate the coefficients by, b2, ... by, For an (n — [th-order polynomial, n data points
are required: [x1. fix)]. (v, Sl |4, flxq)]. We use these data points and the
following equations to evaluate the coefficients:

by = flxy) (14.11)

by = f[.t’ji.‘{’ll {14.12)

by = flxs xox] (14.13)

hy = flag, vy, oo, x2, 0] (14.14)

where the bracketed function evaluations are finite divided differences. For example, the
tirst finite divided difference 1s represented generally as

fl(xa}_f{x_f]

Xi — X

flrixgl = (14,15}

The second finite divided difference, which represents the difference of two first divided
differences, is expressed generally as

Tl x] = Sl xal

Flei v o xp] = {14.16)
X — A
Similarly, the nth finite divided difference is
YT FTINS TPRRE e Ml  I FO ( STIS, DR
_.f-EIu..T.ar_]“.-,ILI]f: .IFE ae A1 ..] f[ i1 =2 ]]’ (14.17)

A’,r - .-TE
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EXAMPLE 14.4

e
£ Flxd > flx. 5] - _i"[.r,..ra.x,iff_f_’,."’_f!.u. 1]
X fixg) Flnn %) § Tl X k]
Ay f{xj] _ﬂ-l'.u l’_\l
Xy Hxg)

FIGURE 14.5
Graphical depiction of the recursive natuie of finite dividad differences. This representation is
referrad to as o divided difference table.

These differences can be used to evaluate the coefficients in Eqgs. (14.11) through (14.14),
which can then be substituted into Eq. (14, 107 o yicld the general form of Newton's inter-
polating polynomial:

Lol =Flxn + (o — g flea, o] 4 (0 —xlx — a0 f L, vz, 0]
el —xp iy = = e Xy 2] (1S

We should note that it is not necessary that the data points used in Eq. (14.18) be
equally spaced or that the abscissa values necessarily be in ascending order. as illustrated
in the following example. Also, notice how Eqs, (14.15) through (14.17) are recursive—
that is, higher-order differences are computed by taking differences of lower-order differ-
ences (Fig. 14.5), This property will be exploited when we develop an efficient M-file in
Section 14.2.4 1o implement the method.

MNewton Interpolating Polynomial

Problem Stotement.  In Example 14.3, data points at x; = 1,02 = 4, and x5 = 6 were
used 1o estimate In 2 with a parabola, Now, adding a fourth point [x: = 5; fin) =
1.600438], estimate In 2 with a third-order Newton's interpolating polynomial,

Selution.  The third-order polynomial, Eq. (14.10) withn = 4, is
Fulxd = by hale = xpd 4 i = xpHx = )+ gl = o Hx = o)y — )
The first divided differences for the problem are [Eq. (14.15)]

1.386294 — 0

Fln x] = ————— = 0.4620981
)

1.791759 — [.386294

flez, ] = i =0.2027326
6—4

1609438 — 1.791759

flra. 3] = =0.1823216

-6
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The second divided differences are [Eq. (14.16)]
0.2027326 — 0.4620981

flvz, vz, 0] = 5.1 = 005187311
1823216 — 0,202732
Fle, v, 1] = 21823 g 2 027326 0.02041100

The third divided difference 15 [Eq. (1417 with n = 4]
—00204 1100 — (-0.05187311)

Flxgxs.0, 01 = - = 0.007865529
Thus, the divided difference table is
() First Second Third
i 0 0. 4620981 ~005187311 0.007BAS5EY
4 1 3842504 02027326 ~(0.02047 100
& 1 AR 759 01823214
5 1.609438

The results for fixg), flxa. oyl fles. oo, o], and flag. a3, 22, 0] represent the
coefficients by. by, by, and by, respectively, of Eq. (14.10}. Thus, the interpolating cubic is

Sl = 04+ 04620081y — 1) — 005187311y — 1)(x — 4)
+ 0.007865529%x — [Hx —4)(x — 6]

which can be used to evaluate f5(2) = 0.6287686. which represents a relative error of
£, = 9.3%. The complete cubic polynomial is shown in Fig, [4.6.

FIGURE 14.6

The use of cubic interpalation io estimate In 2.

fiaik
it

2l

ki fn=inz
1

- Cubic

| estimate

5 | |

1] {2 *
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14.2.4 MATLAB M-file:

It 15 straightforward to develop an M-file to implement Newton interpolation. Asin Fig. 14.7,
the first step is to compute the finite divided differences and store them in an array. The dif-
terences are then used in conjunction with Eq. (14.13) to perform the interpolation.

An example of a session using the function would be to duplicate the calculation we

just performed 1in Example 14.3:

»» format long
== X = {1 4 & 51%;

FIGURE 14.7

An Mdile 1o implemant Newlon interpalation,

function yint = ¥Wewtint {x,y, xx)

# newtintbi{x,v,xxl:

% Mewbon interpolaticon, Uses an (n - 1) -order Newton
interpolating polvhnomial based on n data peoints (x, ¥l
te determine a valus of the dependent variable {yint)
at a given wvalue of the independent variable, =x.

input:

% = independant variakls

v = dependent variable

¥ = value of independent variable at which
interpolaktion is caleulated

cutput :
yint = interpolated value of dependent variable

oF of of of oF of of of OF of

% compukte the finite divided differences in the form of a
% difference table
ni= length =)
if lengthi{y}l-=n, error{'x and v mast be same length'); end
b= zeros{n, n);
% assign dependent variables to the first column of b.
bt:.1l) = wi:}; % the {:) engures that y iz a column vector,
HEhen e A

S

Diisges b b g e e e e e e e R

el
end
% uege the finite divided differences to interpolate
i
vinte=—hlal
for § = 1:n-1

e R

yint = wvint+b(1l,3+1)*xt;
=T
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14.3

W = lﬂf_.f[x.;’?
== Mewtint (®,v,2)

ans =
0.6287e857800841

LAGRANGE INTERPOLATING POLYNOMIAL

Suppose we formulate a linear interpolating polynomial as the weighted average of the two
values that we are connecting by a straight line:

Flxdh = Ly fla) 4+ Lafixa) (14,19}

where the I.'s are the weighting coefficients. It is logical that the first weighting coefficient
15 the straight line that is equal to 1 at x; and O at 1y

X = Xa

Ly =
Xy = Xz

Similarly, the second coefficient is the straight line that is equal o | at x; and O ag xy;

X — X
L=

X2 — X1

Substituting these coefficients into FEg. [4.19 yields the straight line that connects the
points (Fig. 14.8):

— X

X — X X )

hix)=——fln) + T x2) 14.20}
X — X7 X — X

where the nomenclature fi(v) designates that this is a first-order polynomial. Egqua-

tion (14.20) is referred to as the linear Lagrange interpolating palviomial.

The same strategy can be employed to fit a parabola through three points. For this case
three parabolas would be used with each one passing through one of the poinis and equal-
ing zero at the other two. Their sum would then represent the unique parabola that connects
the three points. Such a second-order Lagrange interpolating polynomial can be written as

{x —x2)ix — x3) {r —ax Mx — x3)

falx) = — flx) +

{xp — )y — a3 (xp —x Mg — )

(x —xpHx — X3}
ix {14.21
(X3 — xp)ixs —xz}f W ' !

filxa)

Notice how the first term is equal to f(x) at x; and is equal to zero at x» and v3. The other
terms work in a similar fashion.

Both the first- and second-order versions as well as higher-order Lagrange polynomi-
als can be represented concisely as

Jfo1tx) = ZL;-(I}_{{L-} {14.22)
Qe



| Chapra: Appliad Numerical | 14, Curve Fitting: Taxt 5 Tha MR-l

Mathods with MATLAB for  Polynomial Interpolation Campisnas, 2004
Engineers and Scientists
248 CURVE FITTING: POLYNOMIAL INTERPOLATION

EXAMPLE 14.5

itd]

fixsd

St

FIGURE 14.8

A visual depiction of the raticnole behind lagiange interpolating palynomials. The figure shows
the firstorder case. Each of the two terms of Eq. {14.20] passes through one of the points and
is zero at the other. The summation of the two terms must, therefore, be the unique straight line
that connects fhe o poinits.

where
n - X
Loy =] . (14.23)
PR ¥ . I
Jut
IE

where n = the number of data points and [] designates the “product of.”

Lagrange Interpolating Polynomial

Problem Stafement.  Use a Lagrange interpolating polynomial of the first and second
order to evaluate the density of unused motor oil at T = 15 "C based on the following data:

xp =10 ,f{x;}=3.85

=20 f(x) = 0800

=40 flx) =0212
Solution.  The first-order polynomial [Eq. (14.20)] can be used to obtain the estimate at
x =15

15— 20 15-0
g = 5 [ = 15
fiix) T 3.85 + 30— 00.3{}0 1.5625
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In a similar fashion, the second-order polynomial is developed as [Eq. {14.21)]

(15 — 20015 — 4 (15 — 0¥ 15 — 40)

flxy = 385+ 0.800

(0 — 20000 — 40) (20 — 0 (20 — 40)

(15— (15 - 20

(3212 = 1.331
a0 0@0—20)" 6873

14.3.1 MATLAB M-file:

It is straightforward to develop an M-file based on Egs. (14.22) and (14.23). As in
Fig. 14.9, the function is passed two wectors containing the independent (x} and the
dependent {v) variables. It 15 also passed the value of the independent variable where you
want to interpolate (o). The order of the polynomial is based on the length of the x vector
that is passed. If n values are passed, an (n — 1)th order polynomial is fit.

FIGURE 14.9
An Melile lo implement Lagrange interpolation.

function yint = Lagrange(xX,¥.xx)

% Lagrangeix, v, xx):
% Lagranges interpolation. Uses an {n - 1) -order Lagrange
% interpolating polynomial bagsed on n data points (%, vl
% o determine &8 value of the dependent wariable [yink}
% dat a given wvalune of the independent wvariable, ==,
% input:
% ¥ = independent wvariable
% ¥ = dependent wvariable
% =¥ = value of independent wvariable at which the
% interpolation is calculated
% ocutput:
% wint = interpolated walue of dependent wariable
n = lergthix]:
1f lengthiyvi~=n, errorl'x and v must be same length'); eng
o
(i LR Co ] S

e paR AR G LR

ot = ln

ey
product = product® (X=-=(F) 1 /ixf1}-2i7)1;
B0

erd

5 = ssproduct;
end

yink = &
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14.4

An example of a session using the function would be (o predict the density of air at
1 atm pressure at a temperature of 13 "C based on the first four values from Table 14,1, Be-
cause Tour values are passed to the function, a third-order polynomial would be imple-
menied by the Lagranae function to give:

== format long

= T = {-40 0 20 50];
== d = {1.52 1.2% 1.2 1.091;
=» dengity = Lagrange(T,d,15%)

t =
1.22112847222222

INVERSE INTERPOLATION

As the nomenclature implies, the f(x) and x values in most interpolation contexts are the
dependent and independent variables, respectively. As a consequence, the values of the +'s
are typically uniformly spaced. A simple example is a table of values derived for the fune-
tion f{x) = 1/x:

. ] 2 3 4 5 & 7
g 1 0.5 0.3333 025 0.2 Q1667 0.142%

Now suppose that vou must use the same data, bt you are given a value for fix) and
must determine the corresponding value of x. For instance, for the data above, suppose that
vou were asked to determine the value of x that corresponded to f(x) = .3, For this case.
because the function is available and easy to manipulate, the correct answer can he deter-
mined directly as x = 1/0.3 = 3.3333.

Such a problem is called inverse interpolarion. For a more complicated case, you
might be tempted to switch the fi{x) and x values [i.e., merely plot x versus f(x}] and use
an approach like Newton or Lagrange interpolation to determine the resuft. Unfortunately,
when you reverse the variables, there is no guarantee that the values along the new ahscissa
[the f{x)'s] will be evenly spaced. In fact, in many cases, the values will be “telescoped.”
That is. they will have the appearance of a logarithmic scale with some adjacent points
bunched together and others spread out widely. For example. for f{x) = 1/x the result is

) (1429 O lass L 025 03333 0.5 I
A & ] 4 3 2 I

Such nonuniform spacing on the abscissa often leads 1o oscillations in the resulting in-
terpolating polynomial, This can occur even for lower-order polynomials, An alternative
strategy is (o fit an nth-order interpolating polynomial, £, (1), to the original data [i.e., with
Fix) versus x]. In most cases, because the +'s are evenly spaced, this polynomial will not
be ill-conditioned, The answer to your problem then amounis o finding the value of x that
makes this polynomial equal 1o the given f(x). Thus, the interpelation problem reduces 1o
a rools problem!

For example, for the problem just outlined, a simple approach would be 1o it a
guadratic polynomial to the three points: (2, 0.5), (3, 0.3333), and (4, 0.25), The result
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would be

14.5

fr0x) = 0.041667x" — 0.375x + 1.08333

The answer o the inverse interpolation problem of finding the v corresponding (o
Fix) = 0.3 would therefore involve determining the root of

0.3 = 0.041667x" — 0.375x + 1.08333

For this simple case, the quadratic formula can be wsed 1o caleulate

_ 0.375 £ ,/1—0.373)7 — 4(0.041667)0.78333 _ 3.704158
e 3(0.041667) = 3295842
Thus, the second root, 3.296. is a good approximation of the true value of 3.333. If addi-

tional accuracy were desired, a third- or fourth-order polynomial along with one of the
root-location methods from Chaps. 5 or 6 could be employed.

EXTRAPOLATION AND OSCILLATIONS

Before feaving this chapter, there are two issues related o polynomial interpolation that
must be addressed. These are extrapolation and oscillations,

14.5.1 Extrapolation

Extrapolation is the process of estimating a value of f(x) that lics outside the range of the
known base points, xy, 2o, 2. As depicted in Fig, 14,10, the open-ended nature of

FIGURE 14.10 - _
[ustration of the possible divergence of an exropolated prediction. The extrapalation is based
on fiting a pambelo thiough the first thrae known points.

ftx)

Interpolation o Extrapolation

[}

1

1

! Extrapolation
i of interpolating
Iy polynomial
:

1

1

1

1

1

1

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
%



| Chapra: Appliad Numerical | 14, Curve Fitting: Taxt 5 Tha MR-l

Mathods with MATLAB for  Polynomial Interpolation Campisnas, 2004
Engineers and Scientists
252 CURVE FITTING: POLYNOMIAL INTERPOLATION

EXAMPLE 14.6

extrapolation represents a step into the unknown because the process extends the curve
bevond the known region. As such, the true curve could easily diverge from the prediction.
Extreme care should, therefore, be exercised whenever a case arises where one musi
extrapolaie,

Dangers of Extrapolation

Problem Statement.  This example is patterned after one originally developed by Forsythe,
Malcolm, and Moler.'! The population in millions of the United States from 1920 1o 2000 can
be tabulated as

1RI0 1930 194l 1950 1980 1970 1980 1960 2000
106,46 12308 13212 15227 18047 20505 22743 24946 28142

Fit a seventh-order polynomial to the first 8 points (1920 to 1990). Use it to compute the
population in 2000 by extrapolation and compare your prediction with the actual result.

Solution.  First, the data can be entered as

x> L o= {[1920:10:1990];
»» pop = [106.468 123,08 132.12 152,27 180.67 205,05 227,23 24%.46];

The poly it function can be used to compute the coefficients
= p o= polyfic{t,pon, 7
However, when this is implemented. the following message is displayed:

Wwarning: Polvnomial is bkadly condivioned. Remove repeated data
pointes or bry centering and scaling as described in HELP
POLYFIT.

We can follow MATLAB s suggestion by scaling and centering the data values as in
=x LS = (K - L1855) 735y
Now poly it works withoul an error message:
s» p o= polyviivits,pop,.7);
We can then use the polynomial coefficients along with the polvval function to predict
the population in 2000 as
== polyval (p, (2000-1955) /35
ans =
17%.08B00
which 1s much lower that the true value of 28142, Insight into the problem can be gained
by aenerating a plot of the data and the polynomaial,

== Lt = linspace{1920,2000);
= pp o= polyval (p, (tE-1955) /350

== plobit,pop, "o tt,pp)

U Cleve Moler is one of the Tounders of The MathWorks, Inc., the makers of MATLAR.
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200

150

1007 | l | ! ! ! |
1920 1930 1940 1950 1960 1970 1980 1990 2000

FIGURE 14.11
Use of o seventhorder polynomial io moke o prediction of U.S. population in 2000 bosed on
dota from 1920 thiough 1990,

As in Fig. 14,11, the resuli indicates that the polynomial seems to fit the data nicely
from 1920 to 1990, However, once we move beyond the range of the data into the realm of
extrapolation, the seventh-order polynomial plunges to the erroneous prediction in 2000

EXAMPLE 14.7

14.5.2 Qscillations

Although “more 1s better” in many contexts, it is absolutely not true for polynomial inter-
polation. Higher-order polynomials tend to be very ill-conditioned—that is, they tend to be
highly sensitive to round-off error. The following example illustrates this point nicely.

Dangers of Higher-Crder Polynomial Interpolation

Problem Statement. In 1901, Carl Runge published a study on the dangers of higher-
order polynomial interpolation. He looked at the following simple-looking function:

= {14.24)

| + 25x?
which is now called Runge s funcrion. He ook equidistantly spaced data points from this
function over the interval [-1. []. He then used interpolating polynomials of increasing
order and found that as he ook more points, the polynomials and the original curve differed
considerably, Further, the situation deteriorated greatly as the order was increased. Duphi-
cafe Runge’s result by using the polveic and polyval functions to fit fourth- and tenth-
order polynomials to 5 and 1] equally spaced points generated with Eqg, (14.24), Create
plots of your resulis along with the sampled values and the complete Runge's function,
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Solution.  The five equally spaced data points can be generated as in

== ® o= linspace{-1,1,51;
== 0y o= L./ led5%x, "2

Next, a more finally spaced vector of xx values can be computed so that we can create a
smooth plot of the results:

== ¥ = linspace{-1,11;

Recall that 1 inspace antomatically creates 100 points if the desired number of points is
not specified. The polv it function can be used o generate the coefficients of the fourth-
order polynomial, and the polval function can be used (o generate the polynomial iner-
polation at the finely spaced values of s

»x op o= polyiici{x,y. 417

== vd = polyval (o, xx);

Finally, we can generate values for Runge’s function itself and plot them along with the
polynomial fit and the sampled data:

= oyl o= Lo/ L+25%xx, "2
=» plotix,y, "o xx, vd,xx, v, '--"]

Asin Fig. 14,12, the polynomial does a poor job of following Runge’s function,
Continuing with the analysis, the tenth-order polynomial can be generated and plotted
with

== x = linspace(-1,1,11};
wa oy o= 1. {1+25*R, 720

FIGURE 14.12
Comporison of Runge's unction [dashed line} with o fourthorder polynomial fit to 5 points
sompled from the functicn.
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: |

1.5 -
0.5 | | |

] 0.5 0 0.5 1
FIGURE 14.13
Comparison of Runge’s function [dashed linel with o sentharder polynomial fitto 11 points
Si]mF_'.'lud FT‘CWTE ':h{:.‘ }U:":Cﬁl.'_fln.
e o= polyfit(x,y,100;
== W10 = polyval (p,xxl;
== plotix, v, "o o, vlD xe, v, et
Asin Fig. 14.13, the fit has gotten even worse, particularly at the ends of the interval!

Although there may be certain contexts where higher-order polynomials are necessary,
they are usually to be avoided. In most engineering and scientific contexts, lower-order
polynomials of the type described in this chapter can be wsed effectively to capture the
curving trends of data without suffering from oscillations.

PROBLEMS

14.1 Given the data

14.2 Given the data

Ll Y

) 0 5 7 65 2

. I 2 3 5 &
) 4.75 4 5.25 1975 K]

{a) Calculate f13.41 using Newlon’s interpolating polynomi-
als of order | through 3. Choose the sequence of the points
for your estimates to attain the best possible accuracy.

(b} Repeat (a) but use the Lagrange polvnomial.

Calculate f(4) using Newton's interpolating polynomials of
order | through 4. Choose your base points to aftain good
accuracy. What do your resulis indicate regarding the order
of the polynomial used o generate the data in the rable?



| Chapra: Appliad Numerical | 14, Curve Fitting: Taxt
Mathods with MATLAB for  Polynomial Interpolation

Engineers and Scientists

256

5 The Mchrave—Hilt
Campaenas, 2004

CURVE FITTING: POLYNOMIAL INTERPOLATION

143 Repeat Prob. 14.2 using the Lagrange polynomial of

order 1 through 3.

14.4 Table P13.5 lists values for dissolved oxygen concen-

tration in water as a function of temperature and chioride

concentration,

{a} Use quadratic and cubic interpelation to determine the
oxveen concentration for T = 12°C and ¢ = 10 g/l..

{b) Use linear interpolation to determine the oxygen con-
centration for T = 12°Cand ¢ = 15 g/l..

{c) Repeat (b} but use quadratic interpolation.

14.5 Employ inverse interpolation using a cubic interpolat-

ing polynomial and bisection to determine the value of v that

corresponds to fx) = 1.6 for the following mbulated data;

] 2 3 4 5 & 7
)y 36 18 12 0% 0F2 1.5 051429

14.6 Employ inverse interpolation to determine the value of
x that corresponds o f{x) = 0.93 for the following tabu-
lated data:

1 2 3 4 3
0L 08 09 OR4T17s 0951538

LR

)

Note that the values in the table were generated with the

function f{x) = x2/(1 4 7).,

{a} Determine the correct value analytically,

{b) Use quadratic interpolation and the quadratic formula o
determine the value numerically.

{c) Use cubic interpolation and bisection to determine the
value numerically.

14.7 Use the portion of the given steam table for super-

heared water at 2000 MPa w find (a) the comesponding

entropy s for a specific volume v of 0118 with linear inter-

polation, (b) the sume corresponding entropy using qua-

dratic interpolation, and (¢) the volume corresponding to an

entropy of 6.45 using inverse interpolation.

010357
G414

-, mi/kg
 klf{kg K}

DT ia4
bhd53

012547
& G4

14.8 The following data for the density of nitrogen gas ver-
sus temperature comes from a table that was measured with
high precision. Use first- through fifth-order polynomials o
estimate the density at a temperature of 330 K. What is your

best estimate? Employ this best estimate and inverse inter-
polation to determine the corresponding temperature.

K 200 250 300 350 400 ASD
Density, |.708 12367 1939 09467 (0854 0759
kg/m?

14.9 Ohm’s law states thar the voltage drop V across an
ideal resistor is linearly proportional to the current § flowing
through the resister as in V' =i K, where R is the resistance.
However, real resistors may not always obey Ohm's law.
Suppose that you performed some very precise experiments
to measure the voltage drop and corresponding current for a
resistor, The following results snggest a curvilinear relation-
ship rather than the straight line represemed by Ohm's Tow:

—1 -0.5

=193 4]

-025
~13.5625

0.25 0.5 i
13,5625 41

To quantify this refationship, a curve must be fir 1o the dara.
Because of measurement error, regression would typically
be the preferred method of curve fitting for analyzing such
experimental data. However, the smoothness of the relation-
ship. as well as the precision of the experimental methods,
suggests thal interpolation might be appropriate. Use a fifth-
order interpolating polynomial to fit the data and compute V'
for i = (.10,

14,10 Bessel functions often arise in advanced engineering
analyses such as the study of electric fields, Here are some
selected values for the zero-order Bessel function of the first
kind

- 0.5 1 1.5

“ol) 09384570 0765198 0511828
Z 2.5 3

ol ) 0223801 ~{134A8384 ~0 260057

Estimate fy(1.82) using third-, fourth-, and fifth-order inter-
polating polynomials. Determine the percent relative error
for each case based on the true value, which can be deter-
mined with MATLAR's built-in function beszal .

14.11 Repeat Example 14.6 but using firsi-, second-, third-,
and fourth-order interpolating polynomials o predict the
population in 2000 based on the most recent data. That is, for
the linear prediction use the data from 1980 and F9940, for the
quadratic prediction use the data from 1970, 1980, and 1990,
and so on. Which approach vields the best result?



| Chapra: Appliad Numerical | 15 Curve Fitting: Splines Taxt 5 Tha MR-l
Methods with MATLAB for Campisnas, 2004
Engineers and Scientists

Curve Fitting: Splines

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce yvou to splines. Specific
ohjectives and topics covered are

®*  Understanding that splines minimize oscillations by fitting lower-order
polvnomials to data in a piecewise fashion.
Knowing how to develop code to perform a table lookup.
Recognizing why cubic polynomials are preferable to guadratic and higher-
order splines.
Understanding the conditions that underlie a cubic spline fit.
Understanding the differences between natural, clamped. and not-a-knot end
conditions.

*  Knowing how to fit a spline to data with MATLAB’s built-in functions.

15.1 INTRODUCTION TO SPLINES

In Chap. 14 {n — 1)th-order polynomials were used to interpolate between i data points.
For example. for eight points, we can derive a perfect seventh-order polynomial. This
curve would capture all the meanderings (at least up o and including seventh derivatives)
suggested by the points, However, there are cases where these functions can lead to ermo-
neous results becawvse ol round-off error and oscillations. An allernative approach is to
apply lower-order polynommials in a piecewise fashion to subsets of data points. Such con-
necting polynormials are called spline functions.

For example, third-order curves emploved to connect each pair of data points are
called cubric splines. These functions can be constructed so that the connections between
adjacent cubic equations are visually smooth, On the surface, it would seem that the third-
order approximation of the splines would be inferior 1o the seventh-order expression. You
might wonder why a sphne would ever be preferable.

257
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FIGURE 15.1
A visual representalion of @ situation where splines are superior lo higheroider |n|:=-f|:mlu..nq
mlynomm The function 1o be fit undergoes an ahrup. ingrense at x = 0. Parls [+ | thiough
-1 indicale that the abrunl change induces oscillakions in inter pt}lalum, polynamials. In conlrast,

because it is limited to staightine connections, a linear spline |- | provides & much more
accaplable approximation,

%

Figure 15.1 illustrates a situation where a spline performs better than a higher-order
polynomial. This is the case where a function is generally smooth but undergoes an abrupt
change somewhere along the region of interest. The step increase depicted in Fig. 5.1 is
an extreme example of such a change and serves to illustrate the point.

Figure 15, la through ¢ illustrates how higher-order polynomials tend to swing through
wild oscillations in the vicinity of an abrupt change. In contrast, the spline also connecis the
points, but because it is limited to lower-order changes, the oscillations are kept to a mini-
mum. As such, the spline usually provides a superior approximation of the behavior of
functions that have local, abrupt changes.
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15.2

FIGURE 15.2
The drafting technique of using a spline to draw smooth curves through a series of paints. Notice
how, af the end points, the spline straightens out. This is called @ "natural” spline.

The concept of the spline originated from the drafting technique of using a thin, flexi-
ble strip (called a spline) to draw smooth curves through a set of points. The process is de-
picted in Fig. 15.2 for a series of five pins (data points). In this technigue, the drafter places
paper over a wooden board and hammers nails or pins into the paper (and board) at the lo-
cation of the data points. A smooth cubic curve results from interweaving the strip between
the pins. Hence, the name “cubic spline™ has been adopted for polynomials of this type.

In this chapter, simple linear functions will first be used to introduce some hasic con-
cepts and issues associated with spline interpolation. Then we derive an algorithm for fitting
quadratic splines to data. This is followed by material on the cubic spline, which is the most
common and vseful version in engineering and science. Finally, we describe MATLABs
capahilities for piecewise interpolation including its ability to generate splines.

LINEAR SPLINES

The notation used for splines is displayed in Fig. 15.3. For n data points (f = 1.2, ... . n),
there are n — 1 intervals. Each interval § has its own spline function, s (v). For linear
splines, each function is merely the straight line connecting the two points at each end of
the interval, which is formulated as

silx) =ap 4 bilv — ) (15.1)
where a; 1s the intercept. which is defined as

a = f; (15.2)
and by 15 the slope of the straight line connecting the points:
i —

b =
R Y

(15.3)
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EXAMPLE 15.1

fixih
L Es] stx) R

Interval

FIGURE 15.3
Matation used to derive splines. Motice that there are n — 1 intervals and n dota points.

where f; is shorthand for f{x;). Substituting Eqs. (15.1) and (15.2) into Eq. (15.3) gives

s{xd = fi + f'{r —x) {1543
Vigl — Xj
These equations can be vsed to evaluate the function at any point between xy and &,
by first locating the interval within which the point lies. Then the appropriate equation is
used 1o determine the function valoe within the interval. Inspection of Eq. (15.4) indicates
that the linear spline amounts to using Newton's first-order polynomial [Eqg. (14.5)] to
interpolate within cach interval.

First-Order Splines

Problem Staterment.  Fit the data in Table 15.1 with first-order splines, Evaluate the
function at v = 5,

TABLE 15.1 Data to be fit with spline functions,

1 3.0 2.5
2 4.5 1.0
3 70 2.5
4 0 0.5

Selution.  The data can be substituted into Eg. (15.4) to generate the linear spline
functions. For example, for the second interval from v = 4.5 to x = 7. the tunction is
S—1 D

2
.!'1{1'} =1 D-I‘- W 43)
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The equations for the other intervals can be computed, and the resulting first-order splines
are plotted in Fig. 15.d4a. The value at vy =51is 1.3
25-1.0

X)) = 545 =123
5aix) i.{.‘i-l-?_{} ..... 4.5tﬁ 45y =13

Wisual inspection of Fig. 15.4a indicates that the primary disadvantage of first-order
splines is that they are not smooth. In essence, at the data points where two splines meet
(called a &nor), the slope changes abruptly. In formal terms, the first derivative of the func-
tion is discontinuous at these points, This deficiency is overcome by using higher-order
polvnomial splines that ensure smoothness at the knots by equating derivatives at these
points, as will be discussed subsequently. Before doing that. the following section provides
an application where linear splines are useful.
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15.2.1 Table Lookup

A table lookup is a common task that is frequently encountered in engineering and science
computer applications. It is useful for performing repeated interpolations from a table of
independent and dependent variahles. For example, suppose that you would like to set up
an M-file that would use linear interpolation to determine air density at a particular tem-
perature based on the data from Table 14.1. One way to do this would be to pass the M-file
the temperature at which you want the interpolation to be performed along with the two ad-

joining values. A more general approach would be to pass in vectors containing all the data

and have the M-file determine the bracket. This is called a rable lookup.

Thus, the M-file would perform two tasks. First, it would search the independent vari-
able vector to find the interval containing the unknown. Then it would perform the linear
interpolation using one of the technigues described in this chapter or in Chap. 14,

For ordered data, there are two simple ways to find the interval. The first is called a
seguential search. As the name implies, this method involves comparing the desired valoe
with each element of the vector in sequence until the interval is located. For data in as-
cending order, this can be done by testing whether the unknown is less than the value being
assessed. If so. we know that the unknown falls between this value and the previous one
that we examined. If not, we move to the next value and repeat the comparison. Here is a2
simple M-file that accomplishes this objective:

function vi = TableLook{x, v, =xxl

n = lengthix);

1f xx o< x(1) | == o> xin
ervor{'Interpoliation outside range*)

ernd

% seqquential search

i = 1;

while{l})
1f xx == x{1 + 1}, break, end
=1+ 17

e

% linear interpolation

vi o= w1} + (y{i+1l)-y i)t/ faeial)~did ) * (mu-aldd )y

The table’s independent variables are stored in ascending order in the array = and the
dependent variables stored in the array +. Before searching, an error trap is included to en-
sure that the desired value »o: falls within the range of the «’s. Awhile . . . break loop
compares the value at which the interpolation is desired, =, to determine whether it is less
than the value at the top of the interval, = {1+1 1. For cases where xx is in the second inter-
val or higher, this will not test true at first. In this case the counter i is incremented by one
so that on the next iteration, == is compared with the value at the top of the second inter-
val. The loop is repeated until the o is less than or equal to the interval’s upper bound, in
which case the loop is exited. At this point, the interpolation can be performed simply as
shown.

For situations for which there are lots of data, the sequential sort is inefficient because
it must search through all the preceding points to find values. In these cases. a simple
alternative is the binary search. Here is an M-file that performs a binary search followed
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15.3

by lincar interpolation;

function vi = TableLookBin(x, v, x)
n o= lengthix;
If 2o« :{dl) | oxx o= xi{nm)
error (' Interpolation outside rangs')
and
% bhinary search
il = 17 iU = my
while (1)
if iU - iL <= 1, break, end
iM o= dnt{{iL + iU / Z);
1f = (1M} = x=x
iL = iM;
elas
iu = iM;
ard
e
% linsar interpolation
vio= yiiLl 4+ (yidL+lb=w {ibh A (A1) == i) 0% {w ~ ®{il) )

The approach is akin o the bisection method for root focation. Just as in bisection, the
index at the midpoint i is computed as the average of the first or “lower™ index iz = 1
and the last or “upper” index LU = n. The unknown :x is then compared with the value of
= at the midpoint = (115 10 assess whether it is in the lower halfl of the array or in the upper
half. Depending on where it lies, either the Tower or upper index is redefined as being the
middle index. The process is repeated until the difference between the upper and the lower
index is less than or equal to zero. At this point, the lower index lies at the lower bound of
the interval containing =, the loop terminates, and the linear interpolation is performed.

Here is a MATLAB session illustrating how the binary search function can be applied
to calculate the air density at 350 °C based on the data from Table 14,1, The sequential
search would be similar,

[-40 0 20 50 L00 150 200 250 300 400 5007
== density = {1,652 1.2% 1.2 1.05% .94 %35 [Tdg (675
»» TablelookBin T, densicy, 350)

ww T o=

ans =
0.5705

This result can be verified by the hand caleulation:

.325 — (L.616
F(350) = 0.616 + ———

— (350 — = {}.371)3
300 — 300 (350 — 300) = 0.5705

QUADRATIC SPLINES

To ensure that the nth derivatives are continuous at the knots, a spline of at least » + |
order must be used, Third-order polynomials or cubic splines that ensure continuous first
and second derivatives are most frequently used in practice. Although third and higher
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derivatives can be discontinuous when using cubic splines, they usually cannot be detected
visually and consequently are ignored.

Beeause the derivation of cubic splines is somewhat involved, we have decided o first
ittustrare the concept of spline interpolation using sccond-order polynomials. These “qua-
dratic splines™ have continuous first derivatives at the knots. Although quadratic splines are
not of practical imporiance, they serve nicely o demonstrate the general approach for de-
veloping higher-order splines.

The objective in quadratic splines is w derive a second-order polynomial for cach
interval between data points. The polynomial for each interval can be represented generally
as

(XY =a; + blx —x) + oy —x)* (15.5)

where the notation is as in Fig, 15.3, For i data poimts (0 = 1,2, ..., n), there are o — |
intervals and, consequently, 3 — 1) unknown constants (the a's, b's, and ¢'s) 10 evaluate,
Therefore, 3n equations or conditions are required o evaluate the unknowns, These can be
developed as follows:

1. The function must pass through all the points. This is called a continuity condition. It
can be expressed mathematically as

fi = a4 bilxi = x) + 6l — x)°
which simplifies to
ay = f; (15.6)

Therefore, the constant in cach quadratic must be equal 1o the value of the dependent
variable at the beginning of the interval. This result can be incorporated into Eq. (15.5):

S0 = f b — 1) +elr —x)7

Note that because we have determined one of the coefficients, the number of conditions
to be evaluated has now been reduced o 2(n — 1),

2. The function values of adjacent polynomials must be equal at the knots. This condition
can be written for knot 7 + | as

Fi by = i+ e = 307 = fi b (g — Y1) + G ey — x0)°
{157

This equation can be simplified mathematically by defining the width of the ith interval
as

fi:' = Xjyp] = Xj
Thus, Eq. (15.7) simplifies to
i+ by + i-';'-'lf = fiul (15.8)

This equation can be written for the nodes, i = 1, ..., n — [. Since this amounts ton — |
conditions, it means that there are 2(n — 1) — (n — 1) = n — | remaining conditions,
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EXAMPLE 15.2

3. The first derivatives at the interior nodes must be equal. This is an important condition,
because it means that adjacent splines will be joined smoothly, rather than in the jagged
fashion that we saw for the linear splines. Equation (15.5) can be differentiated to yield

splx) = b + 2e0(x — xy)
The equivalence of the derivatives at an interior node, § 4 1 can therefore be written as
bi + 2eihy = by (15.9)

Writing this equation for all the interior nodes amounts to n — 2 conditions, This means
that there isn — 1 — (n — 2) = | remaining condition. Unless we have some additional
information regarding the functions or their derivatives, we must make an arbitrary
choice to successtully compute the constants. Although there are a number of different
choices that can be made, we select the following condition,

4. Assume that the second derivative is zero at the first point. Because the second deriva-
tive of Eq. (15.5) is 2¢;, this condition can be expressed mathematically as

cp =10

The visual interpretation of this condition is that the first two points will be connected
by a straight line.

Guadratic Splines

Problem Stafement.  Fit quadratic splines to the same data employed in Example 15.1
{Table 15.1). Use the results to estimate the value at v = 5.

Solution.  For the present problem. we have four data points and n = 3 intervals. There-
fore, after applying the continuity condition and the zero second-derivative condition, this
means that 2(4 — 1} — | = 5 conditions are required. Equation (15.8) is written for7 = |
through 3 {with ¢y = () to give

fi+bhy = f2

fa+ bahy +cah3 = fy

Fi o bahs + eshy = fu
Continuity of derivatives, Eq. (15.9), creates an additional 3 — 1 = 2 conditions (again,
recall that ¢ = O):

by =h

by + 2e0hiy = Iy

The necessary function and interval width values are

fl:]-g ha=7.0-45=25
fi=123 hy =9.0-70=20

fi=05
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These values can be substitmed into the conditions which can be expressed in mairix
form as

5 0 O 0 0 Iy —1.5
0 25 625 0 0]|m 1.5
1] 0 ] 2 4 (8. e -2
I -1 0 0 0 i 0
1] | 5 -1 0 C3 0

These equations can be solved using MATLAB with the resuls:

h] gy |
b= -1 ca = 0.64
by =272 ¢y = —1.6

These results, along with the values for the o's (Eq. 15.6), can be substituted into the
original quadratic equations 1o develop the following quadratic splines for each interval:

Sy =25~ (x -3)

() = 10— (x — 4.5 + 0.64(x — 4.5)°
s =254+ 2.2(x — 7.00 — L6(x — 7.00°

Because x = 5 lies in the sccond interval, we use 2 to make the prediction,
52(5) = 1.0 — (5 — 4.5) + 0.64(5 — 4.5)" = 0.66

The total quadratic spline fit is depicted in Fig. 15,45, Notice that there are two short-
comings that detract from the fie: (1) the straight line connecting the first two points and
(2) the spline for the last interval seems to swing (oo high, The cubic splines in the next
section do not exhibit these shortcomings and, as a consequence, are better methods for
spline interpolation.

15.4

CUBIC SPLINES

As stated previously, cubic splines are most frequently used in practice. The shortcomings
of linear and guadratic splines have already been discussed. Quartic or higher-order splines
are not used becavse they tend to exhibit the instabilities inherent in higher-order polyno-
mials. Cubic splines are preferred becavse they provide the simplest representation that
exhibits the desired appearance of smoothness,

The objective in cubic splines is to derive a third-order polynomial for each interval
between knots as represented generally by

§06) = ay + bilx — X))+ o (x — x50 +ditx — xp)° (15.10)

Thus, for » data points (= 1,2, ... n), there are n — | intervals and 4(n — 1) un-
known coefficients o evaluate. Consequenily, din — 13 conditions are required for their
evaluation,
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The first conditions are identical 1o those used for the quadratic case. That is, they are
set up so that the functions pass through the points and that the first derivatives at the knots
are equal. In addition o these, conditions are developed w ensure that the second deriva-
tives al the knots are also equal, This greatly enhances the fit’s smoothness,

Adier these conditions are developed, two additional conditions are required o obtain
the solution. This is a much nicer outcome than occurred for quadratic splines where we
needed o speeify a single condition. In that case, we had (o arbitrarily specify a zero sec-
ond derivative for the first interval, hence making the result asymmetric, For cubic splines,
we are in the advantageous position of needing two additional conditions and can, there-
fore, apply them evenhandedly at both ends.

For cubic splines, these last two conditions can be formulated in several different
ways, A very common approach 1 10 assume that the second derivatives at the first and last
knots are equal (o zero. The visual interpretation of these conditions is that the function be-
comes a straight line at the end nodes, Specification of such an end condition leads to what
is termed a “natural” spline, It is given this name because the drafting spline naturally
behaves in this fashion (Fig, 13.2).

There are a variety of other end conditions that can be specified. Two of the more pop-
ular are the clamped condition and the not-a-knot conditions, We will describe these op-
tions in a subsequent section. For the following derivation, we will limit ourselves (o
natural splines,

Onee the additonal end conditions are specified, we would have the 4(n — 1) condi-
tions needed o evaluate the 4(n — 1) unknown coefficients, Whereas it is certainly possible
to develop cubic splines in this fashion, we will presentan aliernative approach that requires
the solution of only # — 1 eguations, Further, the simultancous equations will be ridiagonal
and hence can be solved very efficiently. Although the derivation of this approach is less
straightforward than for quadratic splines, the gain in efficiency is well worth the effort,

15.4.1 Derivation of Cubic Splines

As was the case with gquadratic splines, the first condition is that the spline must pass
through all the data points.

fi = + by — x) + el — ) +diiy — x)°
which simplifics 1o
a = fi (15.11)

Therefore, the constant in each cubic must be equal o the value of the dependent variable
at the beginning of the interval, This result can be incorporated into Eq. (15.10);

S = fy By — X0 +oly —x07 Fdiix — x)° {15.12)

Next, we will apply the condition that each of the cubics must join at the knots. For
knot i + 1, this can be represented as

fi 4 by + eih? + di] = fia (15.13)
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where
hi = Xip — X

The first derivatives at the interior nodes must be equal. Equation (15.12) is differen-
tiated 1o yield

sy = by 4 2ep(x — x) + 3di (v — ) (15.14)
The equivalence of the derivatives at an interior node, § + 1 can therefore be written as
b 4 2cih; + Adih’ = by (15.15)

The second derivatives at the interior nedes must also be equal. Equation (15.14) can
be differemtiated 1o yield

s5;(x) = 2¢; + 6di(x — x7) (15.16)

The equivalence of the second derivatives at an interior node, / + | can therefore be
writlen ias

ci + 3dih; = Cigl (1517}

Next, we can solve Eq. (15.17) for d;:

iyl —
dy = —— 1518
3k, ( !
This can be substituted into Eq. (15.13) to give
ff
Ti 4 by %(Zi‘f + i) = fin (15.1%)
Equation (15.18} can also be substituted into Eq. (15,15} 1o give
bivr = b + hilci +¢i1) (15.20)
Equation (15.19} can be solved for
i+ =0 My
by = jﬂhi, = 5 Qo+ ) (15.21)
The index of this equation can be reduced by 1:
fi = fici hic
b= ———— - —(2¢;. i 15.22
I o 3 (2o ) [ y
The index of Eq. (15.20) can also be reduced by |
by = by + iyl + ) (15.23)

Equations (13.21) and (15.22) can be substituted into Eq. (15.23) and the result simplified
o yield

_ 3fr'+1 = fi _ 3}; — fie

fioyeioy = 20020 = hidey 4 hicia 5 =

(15.24)
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This equation can be made a liile more coneise by recognizing that the terms on the
right-hand side are finite divided differences (recall Eq. 14.15);

fi—J

P — A

Therefore, Eg. (15.24) can be wrilten as

il =

hi1Cioy 4 20y = hidep 4+ hicigr = 3 (F x5 = flo xal) (1525}

Equation (15.25) can be written for the inmterior knots, § = 2,3, ..., n — 2, which
results in n — 3 simulianeous tridiagonal cquations with # — 1 unknown coefficients,
01,4, <o Ut - Therefore, if we have two additional conditions, we can solve for the ¢'s,
Once this is done, Egs, (15.21) and (15.18) can be used 1o determine the remaining coeffi-
cients, b and 4,

As stated previously, the two additional end conditions can be formulated in a number
of ways. One common approach, the natural spline, assumes that the second derivatives at
the end knots are equal to zero. To see how these can be integrated into the solution
scheme, the second derivative at the first node (Eq. 15.16) can be set o zero as in

s =0=2c; + 6dyix; — x7)

Thus, this condition amounts (o setting ¢ equal 1o zero.
The same evaluation can be made at the last node:

Sy () = 0= 2oy 4+ Oy By {15.26)

Recalling Eq. (15,173, we can conveniently define an extrancous parameter o, in which
case Eq. (15.26) becomes

Coet + ddyihyy =, =0

Thus, o impose a zero second derivative at the last node, we sel ¢, = ().
The final equations can now be written in matrix form as

1 &
-"I|___ 2(hy +f{_?:} hg_”_ €2

..--Ilrfu—z hyz + iy j.“-"ﬁn—] f-'n-:—l
1 Oy

0
30 f [xs, x2] - FIETRE )

= (1527

3L XYoo ] = FTane1, %02])
0

As shown, the system is tridiagonal and hence efficient to solve,
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EXAMPLE 15.3  MNatural Cubic Splines

Problem Statement.  Fit cubic splines to the same data used in Examples 15.1 and 152
{Table 15.1). Unlize the results 1o estimate the value at x = 5,

Solution.  The first step is to employ Eq. (15.27) to generate the set of simultaneous equa-
tions that will be utilized to determine the ¢ coefficients:

| [N 0
hy o 200 4 ko) iz ca | _ ) Sl ] = flaz o))
ha 2iha 4+ by hsy | s 3 flxy. x3] = flxs, x2])
1 4 1]
The necessary function and interval width values are
f1=25 hy =45-30=15
fr=10 hy=70—-45=25
fi=25 hy =9.0-70=20
fi =05
These can be substituted to yield
| Cj 0
15 8 25 el ] 48
25 9 2 cal ) —48
1 4y 0
These equations can be solved using MATLAB with the resulis:
cy =1 p = (1839543726

ry = —{.T66539924 cg =1
Equations (15.21) and (15.18) can be used to compute the B's and s
= —1419771863 d) = 0.186565272
By = —0.160456274 dh = —0.214144487
by = 0.022053232 iy = 0.127756654

These results, along with the values for the a's [Eg. (15.11)]. can be substituted into
Eq. (15.10) to develop the following cubic splines for each interval:

$1(x) = 2.5 — 1.419771863(x — 3) + 0.186565272(x — 3)°

s20x6) = 1.0 — 0.160456274(x — 4.5) + 0.839543726(x — 4.5)"
—0.214144487(x — 4.5)°

$30x0) = 2.5 + 0.022053232(x — 7.0) — 0.766530024(x — 7.0)"
+0.127756654(x — 7.0)°

The three equations can then be employed to compute values within each interval, For

example, the value at v = 5, which lalls within the second interval, is calculated as

§2(5) = 1.0 — 0.160456274(5 — 4.5) + 0.839543726(5 — 4.5)7 — 0.214144487(5 — 4.5)°
= |.102889734

The total cubic spline fit is depicted in Fig. 15.4¢.
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The results of Examples 13,1 through 15.3 are summarized in Fig. 15.4. Notice the
progressive improvement of the fit as we move from linear to guadratic 1o cubic splines,
We have also superimposed a cubic interpolating polynomial on Fig. 15.4¢. Although the
cubic spline consists of a series of third-order curves, the resulting fit differs from that
obtained using the third-order polynomial. This is due to the fact that the natural spline
requires zero second derivatives at the end knots, whereas the cubic polynomial has no
such constraing,

15.4.2 End Conditions

Although s graphical basis is appealing, the natural spline is only one of several end con-
ditions that can be specified Tor splines. Two of the most popular are

o Clamped End Condition. This option involves specifying the first derivatives at the first
and last nodes. This is sometimes called a “clamped” spline because it is what occurs when
you clamp the end of a drafting spline so that it has a desired slope. For example, if zero
first derivatives are specified, the spline will level off or become horizontal at the ends.

o “Not-a-Knor™ End Condition. A third alternative is to force continuity of the third de-
rivative at the second and the next-to-last knots, Since the spline already specifies that
the function value and its first and second derivatives are equal at these knots, specify-
ing continuous third derivatives means that the same cubic functions will apply to each
of the first and last two adjacent segments. Since the first internal knots no longer rep-
resent the junction of two different cubic functions, they are no longer true knots.
Hence, this case is referred to as the “not-a-knot ™ condition. It has the additional prop-
erty that for four points. it vields the same result as is obtained using an ordinary cubic
interpolating polynomial of the sort described in Chap. 14.

These conditions can be readily applied by wsing Eq. (15.25) for the interior knots,
P=23..... i — 2, and vsing first (1) and last equations {n — 1) as written in Table 15.2.

Figure 15.5 shows a comparison of the three end conditions as applied 1o fit the data from
Table 15.1. The clamped case 1s set up so that the derivatives at the ends are equal o zero.

As expected, the spline fit for the clamped case levels off at the ends. In contrast, the
natural and not-a-knot cases follow the trend of the data points more closely. Notice how
the natural spline tends to straighten out as would be expected because the second deriva-
tives go 1o zero at the ends. Because it has nonzero second derivatives at the ends, the not-
a-knot exhibits more curvature,

TABLE 15.2 The first and last equations needed fo specify some commenly used end
conditions for cubic splines.

Condition First and Last Equations

Matiml £ =0t =1

Clamped jwhes £ and £ are the specilied fist Zhyer 4 Ryer = 3F 2, xel - 36
derivatives al the first ond lasl nodes, sspechively], fpten—1 + Phpoyen = 30 — 3 F v, 1t ]

Fokrrknot haey — (fy + Badez + hyea =0
hrr—lf'ﬂ -2 = [hu—z + 'fJ.ll— 130n—1 + -hrr—_‘ Oy = O
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15.5

EXAMPLE 15.4

fix)a
3 e
Mot-a-knot
2 i
‘] |
| | |
02 4 6 8 r

FIGURE 15.5
Comparison of the clamped bwith zero first derivatives), notaknat, and nawral splines for the
data ram Table 151,

PIECEWISE INTERPOLATION IN MATLAB

MATLAB has several built-in functions to implement piccewise interpolation. The spline
function performs cubic spline interpolation as described in this chapter. The pohip fune-
tion implements piecewise cubic Hermite interpolation. The interpl function can also
implement spline and Hermite interpolation, but can also perform a number of other types
of piccewise interpolation,

15.5.1 MATLAB Function:

Cubic splines can be easily computed with the built-in MATLAB function, epline. It has
the general syntax,

vy = splineix, v, xxi (15.28)

where xand » = vectors containing the values that are to be interpolated, and »v = a vector
containing the results of the spline imerpolation as evaluated at the points in the vector s,

By default, =pl ine uses the not-a-knot condition. However, if » containg two more
vitlues than = has entries, then the first and last valoe in - are used as the derivatives at the
end points, Consequently, this option provides the means to implement the clamped-end
condition,

Splines in MATLAB

Problem Statement,  Runge’s function is a notorious example of a function that cannot
be fit well with polynomials (recall Example 14.7):
1

T = e
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Use MATLAB 1o fit nine equally spaced data points sampled from this function in the
interval [—1, 1], Employ (a) a not-a-knot spline and (b) a clamped spline with end slopes
of fi=1land f,_| = —4.

Solution.  (a) The nine equally spaced data points can be generated as in

»= ¥ = linspace{-1,1,%);
== oy o= Lo/ {14208 %w. "2

Next, a more finely spaced vector of values can be generated so that we can create a smooth
plot of the results as generated with the =p1ine function:

== ¥ = linspace{-1,1};
== ¥Y¥Y = spline(x,vy,xx);
Recall that 1inspace amomatically creates 100 points if the desired number of points are

not specified. Finally, we can generate values for Runge’s function itself and display them
along with the spline fit and the original data:

== ¥T = L./A{14+425%xx.72);
== plotix,y, "o, ®x, vy, XX, ¥vr, '--"}

As in Fig. 15.6, the not-a-knot spline does a nice job of following Runge’s function with-
out exhibiting wild oscillations between the points.

{b) The clamped condition can be implemented by creating a new vector v that has the
desired first derivatives as its first and last elements. The new vector can then be used to

FIGURE 15.6 .
Comparison of Runge's function {dashed ling] with @ G-point nalarknat spline fit generated with
MAATLAB (salid line),
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FIGURE 15.7

Comparison of Runge's function (dashed line} with o $-point clamped end spline fit generoted
with MATLAR [solid line). Mote that first dervatives of 1 and -4 ore specified at the left and
right boundaries, respectvely.

generate and plot the spline it

=> yo = [l y -41;
=x VYO = spline{x,vo,xx);
== plob{x, vy, "7 MM, YYD, KN, VD, i

Asin Fig. 15,7, the clamped spline now exhibits some oscillations because of the artificial
slopes that we have imposed at the boundaries. In other examples, where we have knowl-
cdge of the true first derivatives, the clamped spline tends to improve the fit

15.5.2 MATLAB Function: - - - - - - -

The built-in function interpl provides a handy means to implement a number of differ-
el types of piecewise one-dimensional interpolation. It has the general svniax

wi = interplix, v, xi, 'method )

where x and v = vectors containing values that are to be interpolated, i = a vector con-
taining the results of the imterpolation as evaluated at the points in the vector i, and
'method = the desired method. The various methods are

s nearest——nearcst neighbor interpolation, This method sets the value of an interpo-
lated point to the value of the nearest existing data point, Thus, the interpolation looks
like a series of plateaws, which can be thought of as zero-order polynomials,

s ' linear—linear interpolation. This method uses siraight lines to connect the points,
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EXAMPLE 15.5

* ‘spline'—plecewise cubic spline interpolation. This is identical to the spline
function.
o ‘pohip and Ccubic'—piecewise cubic Hermite interpolation.

If the *merhad argument is omitted, the default is linear interpolation.

The pehip option (short for “piecewise cubic Hermite miterpolation™) merits more
discussion. As with cubic splines, pehip uses cubic polynomials to connect data points
with continuouns first derivatives. However, it differs from cubic splines in that the second
derivatives are not necessarily continuous. Further, the first derivatives at the knots will not
be the same as for cubic splines. Rather, they are expressly chosen so that the interpolation
is “shape preserving.” That is, the interpolated values do not tend o overshoot the data
points as can sometimes happen with cubac splines.

Therefore, there are trade-offs between the spl ine and the pohip options. The results
of using =p1ine will generally appear smoother because the human eye can detect dis-
continuities in the second derivative. In addition, it will be more accurate if the data are val-
ues of a smooth function. On the other hand, pebiip has no overshoots and less osciliation
if the data are not smooth. These trade-offs, as well as those involving the other options, are
explored in the following example.

Trade-Offs Using 1

Problem Statement.  You perform a test drive on an automobile where you alternately
accelerate the antomobile and then hold it at a steady velocity. Note that you never decel-
erate during the experiment. The time series of spot measurements of velocity can be
tabulated as

o A 40 35 oli] a0 84 Els] 104 (R
0 2 20 38 80 a0 100 100 125 123

Use MATLAB's interpl function to fit this data with (a} linear interpolation, (b) nearest
neighbor, (¢} cubic spline with not-a-knot end conditions, and (d) piecewise cubic Hermite
interpolation.

Solution.  (a) The data can be entered, fit with linear interpolation, and plotted with the
following commands:

== £ o= [0 20 40 56 &8 B0 84 56 104 1107;
== v o= [0 20 20 38 20 80 100 100 125 1251;
== tht = linspace(0,110};

== vl = interplit,v,tth;

== plot{t,v,'a', tt,wl}

The results (Fig. 15.8a) are not smooth, but do not exhibit any overshoot.
{b) The commands to implement and plot the nearest neighbor interpolation are

=> vI = lnterpl(t,wv,tt, 'nearest®);
== plocio,v, o', 0o, vl
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140

(b} nearest neighbor

140 140 T T T
120 = 120 =
100 = 100 =
80 i 80 =
&0 = 60 =
40 = 40 =
20 =] 20 =
o I I | | | a I | I I I
0 20 40 60 a0 100 120 a 20 40 60 a0 100 120
el spline ()} pchip

splions of the interpl funclion o perform piecewise polynomicl interpolation on o velocity ime series

As in Fig. 15.8b, the results look like a series of plateaus. This option is neither a smooth
nor an accurate depiction of the underlying process.

(¢} The commands to implement the cubic spline are

ol [+ ar bR Pepnd dameml y s
Pt D0, SRiline’ g

o
[

These results (Fig. 15.8¢) are quite smooth, However, severe overshool occurs ar several
locations, This makes it appear that the auvtomobile decelerated several times during the
gxperiment.
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LY T

=
=

I o=
]

.
olotic,v, "o, 0o, vhi

{d) The commands to implement the piecewise cubic Hermite interpolation are

interplit, v, tt, 'oDehip' ) ;

FFor this case, the results (Fig. 15.84) are physically realistic. Becanse of its shape-preserving
nature, the velocities increase monotonically and never exhibit deceleration. Although the
result is not as smooth as for the cubic splines, continuity of the first derivatives at the knots
makes the transitions between points more gradual and hence more realistic,

PROBLEMS

15.1 Given the data

) I 3 £ d 2 I

Fit this data with (a) a cubic spline with natwral end condi-
tions, (h) a cubic spline with not-a-knot end conditions, and
{c) piecewise cubic Hermite interpolation.

152 A reactor is thermally stratified as in the following

table:

Depth, m (U R 1 15 2 25 3
Temperature, °C 70 70 55 22 13 0% 1D

Based on these temperatures, the tank can be idealized as
two zones separated by a strong temperature gradient or
thermocline. The depth of the thermeocline can be defined as
the inflection point of the temperature-depth corve—that is.
the point at which &° T /dz® = 0, At this depth, the hear flux
from the surface to the bortom layver can be computed with
Fourier’s law:

I = kE
Use a clamped cubic spline fit with zero end derivatives
to determine  the  thermoclineg  depth, If & = 0.01
calfis « em - “C) compute the flux across this interface,
15.3 The following is the built-in humps function that
MATLAB wuses to demonsirate some of its numerical
capahilitics:

1 1
037 +001  —097 +0.04

The humps function exhibits both flat and steep regions
over a relatively short & range. Here are some values that

B

fin =

have been generated at intervals of 0.1 over the range from
x =t l:

: a 0.1 0.2z 0.3 0.4 0.5

) 3RS 15347 45887 94500 A7 448 19000
.8 0.7 .8 0% |

)y TLER2 12387 17 B46 21703 16000

Fit this data with a (a} cubic spline with not-a-knot end con-
ditions and (b} precewise cubic Hermite interpolation. In
both cases, create a plot comparing the fit with the exact
humps function.

154 Develop a plot of a cubic spline fit of the following
data with (a) natural end conditions and (b} not-a-knot end
conditions. In addition, develop a plot using {(c) piecewise
cubic Hermite mterpolation.

: ] 100 200 A00
sy o 0.82436 1.00000 073578
: SO0 800 1000

G} 040G 019915 09158

In each case. compare youor plot with the following equation,

which was used o generate the data:
X .
f(_r) = —— g T

200

155 The following data is sampled from the step function
depicted in Fig. 15.1:

1

-1 0.6 -

: O 1
iy a o

o oo
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Fin this data with a (a) cublc spline with not-a-knot end con-
ditions, (b} cubic spline with zero-slope clamped end condi-
tions, and (¢) piecewise cubic Hermite interpodation, In each
case, create a plol comparing the fit with the step function.
15.6 Develop an M-file to compute a cubic spline fit with
natural end conditions. Test your code by using it to dupli-
cate Example 15.3,

15.7 The following data was generated with the fifth-
order pelynomial: flx) = 001850 — 0444 + 39125 -~
154562 + 27.069x — 141

1 3 5 & ry 9
)y ROCD 2172 42200 5430 4912 9120

{a} Fit this data with a cubic spline with not-a-knot end con-
ditions. Creare a plot comparing the fit with the funcrion.
{b) Repeat (a) but use clamped end conditions where the end
slopes are set at the exact values as determined by differen-
tiating the function.
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce vou to numerical integration.
Specific objectives and topics covered are

®*  Recognizing that Newton-Cotes integration formulas are based on the strategy
of replacing a complicated function or tabulated data with a polynomial that is
easy to integrate.
*  Knowing how to implement the following single application Newton-Cotes
formulas:
Trapezoidal rule
Simpson’s 1/3 rule
Simpson's 3/8 rule
*  Knowing how to implement the following composite Newton-Cotes formulas:
Trapezoidal rule
Simpson’s 1/3 rule
*  Recognizing that even-segment—odd-point formulas like Simpson’s 1/3 rule
achieve higher than expected accuracy.
Knowing how to use the trapezoidal rule to integrate unegually spaced data.
Understanding the difference between open and closed integration formulas.

YOU'VE GOT A PROBLEM

ccall that the velocity of a free-falling bungee jumper as a function of tme can be
computed as

v = M-'I'g_mtanh (‘ulli_ﬁf) (6.1}

/ Ly
279
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16.1

Suppose that we would like to know the vertical distance z the jumper has fallen after a
certain time ¢, This distance can be evaluated by integration:

I
zi1) :f v dr {16.2)
i

Substituting Eq. (16.1) into Eg, (16.2) gives

[ ey e
;{r}:f \/ﬂlanh(f'ﬁr) ot (16.3)
0 [+ m

Thus, integration provides the means to determine the distance from the velocity, Calculus
can be used o solve Eqg. (16.3) for

oiry = n In [cnsh (\/HC‘F rﬂ (16.4)
O "

Although a closed form solution can be developed for this case. there are other func-
tions that cannot be integrated analytically. Further, suppose that there was some way to
measure the jumper’s velocity at various times during the fall. These velocities along with
their associated times could be assembled as a table of discrete values. In this situation, it
would also be possible to integrate the discrete data 1o determine the distance. In both these
instances, numerical integration methods are available to obtain solutions. Chapters 16 and
17 will introduce you to some of these methods.

INTRODUCTION AND BACKGROUND
16.1.1 What Is Integration?

According to the dictionary definition, to integrate means “to bring together, as parts, into

a whole; to unite; to indicate the total amount. . . .7 Mathematically, definite integration is
represented by
b
I = f flxbdx {(16.3)
i

which stands for the integral of the function f{x) with respect to the independent variable
x, evaluated between the limits x =g tox = b,

As suggested by the dictionary definition, the “meaning” of Eg. (16.5) is the total
value, or summation, of f(x)dr over the range ¥ = a to b. In fact, the symbol | is actu-
ally a stylized capital S that is intended to signify the close connection between integration
and summation,

Figure 16.1 represents a graphical manifestation of the concept. For functions lying
above the x axis, the integral expressed by Eq. (16.5) corresponds to the area under the
curve of fix) between x = @ and b.

Numerical integration is sometimes referred to as quadrature, This is an archaic term
that originally meant the construction of a square having the smme area as some curvilinear
figure. Today, the term guadrarire is generally taken to be synonymous with numerical
definite integration.
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~

FIGURE 16.1 f | |
Graphical representction of the integral of f(x) between the fimits x = a to b. The mntegral is
equivalent to he area undar the curva,

16.1.2 integration in Engineering and Science

Integration has so many engineering and scientific applications that you were required (o
take integral caleulus in your first year at college. Many specific examples of such appli-
cations could be given in all ficlds of engineering and science. A number of examples re-
late directly to the idea of the integral as the area under a curve. Figure 16.2 depicts a few
cases where integration is used for this purpose.

Other common applications relate to the analogy between integration and sumimation.
For example, a common application is to determine the mean of a continuous function. Re-
call that the mean of discrete of r discrete data points can be caleulated by [Eq. (12.2)].

o
_E Yi

Mean = % (16.6)
where v are individual measarements. The determination of the mean of discrete points is
depicted in Fig. 16.3a.

In contrast, suppose that v is a continuous function of an independent variable x, as
depicied in Fig. 1635, For this case, there are an infinite number of values between a and
b, Just as Eq. (16.6) can be applied to determine the mean of the discrete readings,
you might also be interested in computing the mean or average of the continuous function
v = f{x) for the interval from a to b, Integration is used for this purpose, as specified by

_fy fodr

=

Mean (16.7)

This formula has hundreds of engineering and scientific applications. For example, it is
used to calculate the center of gravity of irregular objects in mechanical and civil engi-
neering and to determine the root-mean-square current in electrical engineering.
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(al o] te)

FIGURE 16.2

25 of b

¥h R
—————————————————————————— Mean
g 1. % % 4 E 8 5

)

¥ = i)

tbl

FIGURE 16.3

A iliustation of the mean for [- | discrale and |- | continuos dato.
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16.2

Integrals are also employed by engineers and scientists to evaluale the tolal amount or
quantity of a given physical variable. The integral may be evaluvated over a line, an area, or
a volume. For example, the total mass of chemical contained in a reactor is given as the
product of the concentration of chermical and the reactor volume, or

Mass = concentration = volume

where concentration has units of mass per volume., However, suppose that concentration
varies from kocation to location within the reactor, In this case, il is necessary o sum the
products of local concentrations ¢; and corresponding elemental volumes AV
i
Muass = Z AV

i=1
where nis the number of discrete volumes. For the continuous case, where ¢y, v, 21 is a
known function and x, v, and z are independent variables designating position in Cartesian
coordinates, integration can be used for the same purpose:

Mass = fff cle, v, ohdvdyd:z
or
Mass = fff{'[V} dVv
W

which is referred to as a volume fmregral. Notice the strong analogy between summation
and integration,

Similar examples could be given in other fields of engineering and science. For exam-
ple, the total rate of energy transfer across a plane where the flux ({in calories per square
centimeter per second) is a function of position is given by

Flux = ff fux d A
A

which is referred o as an areal integral, where A = arca.

These are just a few of the apphications of integraton that you might face regularly in
the pursuit of your profession, When the functions 1o be analyzed are simple. vou will nor-
mally choose to evaluate them analytically, However, it is often difficult or impossible
when the function is complicated, as is typically the case in more realistic examples. In ad-
dition, the underlying function is often unknown and defined only by measurement at dis-
crete points, For both these cases, you must have the ability wo obtain approximate values
for integrals using numerical technigques as described next,

NEWTON-COTES FORMULAS

The Newron-Cotes formulas are the most common numerical integration schemes. They
are hased on the strategy of replacing a complicated function or tabulated data with a poly-
nomial that is easy to integrate:

)] vh
I = | fixyde= | filxddx (16.8)

i a
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where f,(x) = a polynomial of the form

. N N R —1 "
Tl = ag + ok + -+ iy [ B &

{165

where n is the order of the polynomial. For example, in Fig, 16.4a, a first-order polynomial

{(a straight line) is used as an approximation. In Fig
same purpose,

. 16.4h, a parabola is employed for the

FIGURE 16.4
’ I

| LTI T I.l an I[]'L":’_]Ii‘.l l_‘-':," H':IZ‘ [BiLE =II'=II': 20 |

fled Flo

a skaight line and |- | a parabaola

L

.

£
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-

FIGURE 16.5
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Fixih Flxph

16.3

7

-

{a) ' (b

FIGURE 16.6 _
The difference betwaen | | closed and [+ | open integrafion formulas.

The integral can also be approximated using a series of polvnomials applied piecewise
1o the function or data over segments of constant length. For example, in Fig, 16,5, three
straight-line segments are used to approximate the imegral. Higher-order polynomials can
be utilized for the same purpose.

Closed and open forms of the Newton-Cotes formulas are available. The closed forms
are those where the data points at the heginning and end of the limits of integration are
known (Fig. 16.6¢). The open forms have integration limits that extend beyond the range
of the data {Fig. 16.6#), This chapter emphasizes the closed forms. However, material on
open Newton-Cotes formulas is briefly introduced in Section 16.7.

THE TRAPEZOIDAL RULE

The frapezoidal rle 1s the first of the Newton-Cotes closed integration formulas, It corre-
sponds to the case where the polynomial in Eq. (16.8) is first-order:

il : _
I = f [,f'{u} + %ﬁ%u — a}] dx {16.10)

The result of the integration is

Flay+ fi
{1‘}—

I =(h- 3

(16.113
which is called the rrapezoidal rule.

Geometrically, the trapezoidal rule is equivalent 1o approximating the area of the
trapezoid under the straight line connecting f(a) and f{b)in Fig. 16.7, Recall from geom-
etry that the formula for compuiing the area of a trapezoid is the height times the average
of the bases, In our case, the concept is the same but the trapezoid is on its side. Therefore,
the integral estimate can be represenied as

I = width x average height (16,12}
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EXAMPLE 16.1

flod

fily

flay

=
=1

/ i

FIGURE 16.7
Graphical depiction of the apezaidal wle.

or
{ = (b — a) = average height (1613

where, for the trapezoidal rule, the average height is the average of the function values at
the end points, or [ fia} + Fib]/2.

All the Newton-Cotes closed formulas can be expressed in the general format of
Eq. (16.13}. That is, they differ only with respect to the formulation of the average height.

16.3.1 Error of the Trapezoidal Rule

When we employ the integral under a straight-line segment to approximate the integral
under a curve, we obviously can incur an error that may be substantial (Fig. 16.8), An esti-
mate for the local truncation error of a single application of the trapezoidal rule is
'E "
E = ——f"(EWb — a)’ (16.14)
12
where £ lies somewhere in the interval from a to b, Equation (16.14) indicates that if the
function being integrated is Hinear, the trapezoidal rule will be exact because the second de-
rivative of a straight line is zero. Otherwise, for functions with second- and higher-order
denivatives (1L.e.. with curvature), some ermor can occur.

Single Application of the Trapezoidal Rule
Problem Statement,  Use Eq. (16.11) to numerically integrate

Filx) = 0.2+ 255 — 2000" + 6755 — 900x* + 400x”

from @ = () to b = 0.8, Note that the exact value of the integral can be determined analyi-
ically o be 1640533,
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Firk

2.0

Integral estimate
0 0.8 X

FIGURE 16.8
Graphica depiction of the usz of o single opplication of the tropezoida! nle to appraximate the
integral of Flx) = 0.2 4+ 25 — 2000 4+ 675 — 9005 4+ 400" fram x = 0t 0.8,

Solution.  The function values f(0) = 0.2 and f(0.8) = (.232 can be substituted into
Eq. (16.11} to yield

2 232
[ = (0.8~ m% — 0.1728

which represents an error of £, = 1.640533 — 0.1728 = 1.467733. which corresponds to
a percent relative error of £, = §9.5%. The reason for this large error is evident from the
graphical depiction in Fig. 16.8. Notice that the area under the straight line neglects a sig-
nificant portion of the integral lying above the line.

In actual situations, we would have no foreknowledge of the true value. Therefore,
an approximate error estimate 1s required. To obtain this estimate. the function’s second
derivative over the interval can be computed by differentiating the original function twice
to give

f(x) = —400 + 4,050x — 10,800x" + 8.000x"
The average value of the second derivative can be computed as [Eq. (16.7)]

{14 2 ] .
- —400 + 4,050x — 10, L00x )y o
Py o o (400 +4, rﬂg ugimu +8.000chdx

which can be substituted into Eq. (16.14) to yield

1
Ej=-— 1—,,{—5{}}{0.81-‘ = 2.56
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which is of the same order of magnitude and sign as the true error. A discrepancy does exist,
however, becanse of the fact that Tor an interval of this size, the average second derivative
is not necessarily an accurate approximation of f"(£). Thus, we denote that the error is
approximate by using the notation E,, rather than exact by using E,.

16.3.2 The Composite Trapezoidal Rule

One way to improve the accuracy of the trapezoidal rule is to divide the integration interval
from a to b into a number of segments and apply the method to each segment (Fig. 16.9),
The areas of individual segments can then be added to yield the integral for the entire in-
terval, The resulting equations are called composite, or multiple-application, integration
Jformulas.

Figure 16.9 shows the general format and nomenclature we will use to characterize
composite integrals. There are n <+ 1 equally spaced base points (xy, 1y, 22, ..., x;). Con-
sequently, there are n segments of equal width:

b —
h=""9

(16.15)
i

If @ and b are designated as xp and x,, respectively, the total integral can be repre-
sented as

¥y X2 K
I = [ Filxbdx + / fixydx 4+ [ Fixrdy
J Jy Rn

FIGURE 16.9

Comps pezoidal rule

fixia

i x =k
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Substituting the trapezoidal rule for each integral yields
; (X (2 (X~ X
f o plOO S SO+ ) SO + ) (16.16)
2 2 2
or, grouping terms;
w1
|:f(rn)+2z:f£n + %) } {16.17)
or, using Eq. (16.15) o express Eq. (16.17) in the general form of Eq. (16,13)
n=1
Flagy 2 fla) + fix)
I=(h—a) 5=
Widh - {16.18)
Average height
Because the summation of the coefficients of {x) in the numerator divided by 2n is equal
to I, the average height represents a weighted average of the function values. According to
Eq. (16,18}, the interior points are given twice the weight of the two end points f (xy) and
Sl

An error for the composite trapezoidal rule can be obtained by summing the individ-

ual errors for each segment to give
—a)? "

E =— 12 — Zf (&) (16.19)
where (%) is the second derivative at a point & located in segment i. This result can be
simplified by estimating the mean or average value of the second derivative for the entire
interval as

Z f.'.'{&.‘
"
Therefore ¥ £7(&) = n f" and Eq. (16.19) can be rewritten as
(h—a) _,
F=—— 16.21
¢ 2 et
Thus, if the number of segments is doubled, the truncation error will be quartered. Note
that Eq. {16.21) is an approximate error because of the approximate nature of Eq. (16.20).
EXAMPLE 16.2 Composite Application of the Trapezoidal Rule

Problem Statement.  Use the two-segment trapezoidal rule to estimate the integral of
Fr) =024 25x = 200x° 4 675x" — 900x* + 400x°

froma = (tto b = 0.8, Employ Eg. (16.21) to estimate the ercor. Recall that the exact value
of the integral is 1.640533,
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Solution. Fora =2 (h = 0.4)
FOy=02  F04) =2456  f(0.8) = 0232
0.2 4+ 202.456) +0.232

f = i}, — 1:1
0.8 7 0688
E, = 1640333 — 1.0688 = 0.57173 & = 34.9%
0.8
E = ——— =1}
u = T3y 60 = 064

where —6(0 is the average second derivative determined previously in Example 16.1.

The results of the previous example, along with three- through ten-segment applica-
tions of the trapezoidal rule, are summarized in Table 16.1. Notice how the error decreases
as the number of segments increases. However, also notice that the rate of decrease is grad-
ual. This is because the error is inversely related to the square of 1 [Eq. (16.21)]. Therefore,
doubling the number of segments quarters the error. In subsequent sections we develop
higher-order formulas that are more accurate and that converge more guickly on the true in-
tegral as the segments are increased. However, before investigating these formulas, we will
first discuss how MATLADB can be used to implement the trapezoidal rule.

16.3.3 MATLAB M-file: - -2

A simple algorithm to implement the composite trapezoidal rule can be written as in
Fig. 16.10. The function to be integrated is passed into the M-file along with the limits of
integration and the number of segments. A loop is then employed to generate the integral
following Eq. (16,18}

An application of the M-file can be developed to determine the distance fallen by
the free-falling bungee jumper in the first 3 s by evaluating the integral of Eq. (16.3). For
this example, assume the following parameter values: ¢ = 9.81 m/s>, m = 68.1 kg, and

TABLE 16.1 Results for the composite trapezoidal rule to
estimate the integral of fix) = 0.2 4+ 25¢ —
2000 + 675y — 900x" + 400" from
1= 0 fo 8. The exact volue is 1.640533,

(%)
2 04 10688 349
3 lele Y 13695 145
4 02 14848 25
3 e 15399 &l
(5] 1333 15703 4.1
7 017143 1.5887 33
8 o, 16008 2.4
& (nCase T.&0%1 1.9
140 .08 16150 1.&
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function I = trspifunc,a,b.nj
¥ trap{finc,a b, n);
composite trapezoidal rule,
input:
func = name of function to be integrated
&, b = integration limits
n = number of segments
cutput ;
I = integral estimate

S8 dF oF of of of of

= &7
{b - al/n;
feval (func, a}l ;
for J o= 1 n-1
X el
& = 8 + Z*feval {func,x);
end
& = 8 + feval (Eung,b) ;
I = (b -a} * af(z2*n};

m e
(IR

FIGURE 16.10 _
tiefile to implement the compoasite ropezoidal nle.

oy = (.25 kgém. Note that the exact value of the integral can be computed with Eq. {16.4)
as 41.94805.
The function to be integrated can be developed as an M-file or with an inline function,

== v oz inline('sgro{9.81%a8 . 1/0. 2%) *tanhi{sgro (9 810 25/68 . 1y%0) ")

o=
Inline function:
vit) = sgroi9.81*68,1/0.25%)*tanh{aqgre (5. 81*0.25/68.1)*}

First. let’s evaluate the integral with a crude five-segment approximation:

format long
== Lrapiv,0,2,5]

ang =
41.869925359072735%

As would be expected. this result has a relatively high true error of 18.6%. To obtain a more
accurate result, we can use a very fine approximation based on 10,000 segments:

== trapiwv,0,3,10000])

41.948049580175248

which is very close to the true value.
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16.4

SIMPSON'S RULES

Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a
more accurate estimate of an integral is o wse higher-order polynomials to connect the
points. For example, if there is an extra point midway between fia) and f(b), the three
points can be connected with a parabola (Fig., 16.11a). If there are two points equally
spaced between fia) and fib), the four points can be connected with a third-order poly-
nomial {Fig. 16.115). The formulas that result from taking the integrals under these poly-
nomials are called Simpson’s rules.

16.4.1 Simpson’s 1/3 Rule

Simpson's 1/3 rule corresponds 1o the case where the polynomial in Eq. (16.8) is sccond-
order:
I = f [ (X — X — x2) (X —xp)(x — x2)

(xp) + ()
(g — Xy g —A'z]f " () —xpdx — Xz}" }

Iy

(X — xolix — xy)
(X7 —xpx — X}

f f.l‘z}:| dx
where ¢ and b are designated as xp and x>, respectively. The result of the integration is
ho o : :
=3 [f () +4f(x) + flx)] (16.22)

where, for this case, ki = (b — a)/2. This equation is known as Simpson’s 1/3 rule. The
label “1/3" stems from the fact that A is divided by 3 in Eq. (16.22). Simpsen’s 1/3 rule can

Fixl Fixrd

{a [

FIGURE 16.11

[- | Grophical depiclion of Simpson's 1/3 wle: i consists of taking the area under o parabelo
connecting three points. (- | Grophical depiction of Simpsen's 3,/8 wle: I consists of foking the
area under a cubic equotion connacting four points.
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also be expressed vsing the format of Eg. (16.13):
- 4 - o oy
[ = a0t f:’H /x) (16.23)
where ¢ = xg, b = 17, and x; = the point midway between o and b, which is given by
{er + B)/2. Notice that, according to Eq. (16.23), the middle point is weighted by two-
thirds and the two end points by one-sixth.
It can be shown that a single-segment application of Simpson’s 1/3 rule has a trunca-
tion error of
1
Eo=—goh’ (M)
or, because it = (b —a)/2:
ih—a)
| f— (4} }

i 3880 JUED (16.24)
where £ lies somewhere in the interval from a to b, Thus, Simpson’s 1/3 rule is more accu-
rate than the rapezoidal rule. However, comparison with Eq. (16.14) indicates that it is
mare accurate than expected, Rather than being proportional to the third derivative, the
error is proportional to the fourth derivative, Consequently, Simpson’s 1/3 rule is third-
order accurate even though it is based on only three points, In other words, it vields cxact
results for cubic polynomials even though it is derived from a parabolal

EXAMPLE 16.3  Single Application of Simpson’s 1/3 Rule

Problem Stotement.  Use Eq. (16.23) to integrate
Flr) =024 25x = 200x° 4 675x" — 900x* + 400x°

from g = 0 to b = 0.8, Employ Eq. (16.24) to estimate the error. Recall that the exact in-
tegral is 1.640533,

Solution. n=2(h = 0.4y
FO) =02  f0.4)=2456  F(0.8) = 0.232

= U.Sﬂ'z +4[2.4§6) +0.232 1367467

E; = 1.640533 — 1.367467 = 0.2730667 g = 16.6%

which is approximately five times more accurate than for a single application of the trape-
zoidal rule (Example 16.1), The approximate error can be estimated as
5

o=

" 2880

where — 2400 is the average fourth derivative for the interval, As was the case in Exam-

ple 16.1, the error is approximate (f5;) becavse the average fourth derivative is generally

not an exact estimate of ™ (£). However, because this case deals with a fifth-order poly-
nomial, the result maiches exactly,

(—2400) = 0.2730667
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16.4.2 The Composite Simpson’s 1/3 Rule

Just as with the trapezoidal rule, Simpson’s rule can be improved by dividing the integra-
tion interval into a number of segments of equal width (Fig. 16.12). The total integral can
be represented as

N2 ] ™
= | filxddx + j flaydy 4+ -+ j flxrdx [16.25)
v X i LT

Substituting Simpson’s /3 rule for each integral yields

i) +4F 0+ flxn . fla+41 000+ fixs)
= 2h + 2h .
s 4]
fixgay 4l 104 flx)
6

4o 20

or, grouping terms and vsing BEqg. (16,15}

n-l n-2 .
fagy+4 30 fla+2 3 i)+ fx)
i=0.3.5 =7 4.0
I=(b—a) - : (16.26)

3n

FIGURE 16.12
Composite Simpsan's 1,/3
that the method can

fixH 1 4 1 1 4 1

1 4 1] | [ 4 1] [1 4 1
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EXAMPLE 16.4

MNotice that, as illustrated in Fig. 16.12, an even number of segments must be utilized
to implement the method. In addition, the coefficients “4™" and “2" in Eq. (16.26) might
seem pecoliar at first glance, However, they follow naturally from Simpson’s 1/3 rule, As
illustrated in Fig, 16,12, the odd points represent the middle term for each application and
hence carry the weight of four from Eq. (16.23), The even points are common (o adjacent
applications and hence are counted twice.,

An error estimate for the composite Simpson’s rule is obtained in the same fashion as
for the trapezoidal rule by summing the individual errors for the scgments and averaging
the derivative to yield

ih—ai i

Fp=—— .
o ].SU”-L |Ir {lﬁ 2?}

where ' is the average fourth derivative for the interval.

Composite Simpson's 1/3 Rule
Problem Statement,  Use Eq. (16.26) with n = 4 to estimate the integral of
FOr) =024 250 — 2000 + 6750 — 9004 + 40027

from a = 0 to b = 0.5 Employ Eq. (16.27) to estimate the error. Recall that the exact
integral is 1.640533,

Solution. n = 4{h = 0.2);

Sy =02 f10.2) = 1.288
fid4) = 2,456 Fl0.6) = 3.464
S10.8) = 0.232

From Eqg. (16.26):

. . 3.46 A5 232
1:01802+4{E288+ 4ﬁ3+2{246]+02 — 1.623467

F; = 1.640533 — 1.623467 = (.017067 £ = 1.04%
The estimated error (Eqg. 16.27) s

_ (0.8)°

“ T T TR0

which is exact {as was also the case for Example 16.3).

(—2400) = 0.017067

As in Example 16,4, the composite version of Simpson’s 1/3 rule is considered supe-
rior to the trapezoidal rule for most applications, However, as mentioned previously, it is
limited 10 cases where the values are equispaced. Further, it is limited 1o situations where
there are an even number of segments and an odd number of points, Consequently, as dis-
cussed in Section 16.4.3, an odd-segment-cven-point formula known as Simpson’s 3/8 rule
can be used in conjunction with the 1/3 rule 1o permit evaluation of both even and odd
numbers of equispaced segments.
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EXAMPLE 16.5

16.4.3 Simpson’s 3/8 Rule

In a similar manner to the derivation of the trapezoidal and Simpson’s 13 rule, a third-
order Lagrange polynomial can be fit to four points and integrated to yield

3
I = ?t [flx) +3F a0 + 3 ) + fin)]

where i = (b — a}/3. This equation is known as Simpsons 3/85 rufe because i is multiplied
by 3/8. It is the third Newton-Cotes closed integration formula. The 3/8 rule can also he
expressed in the form of Eq. (16.13):

}fflﬂ) 3 ) R 3 () 4 )
b

Thus, the two interior points are given weights of three-eighths, whereas the end points are
weighted with one-eighth, Simpson’s 3/8 rule has an error of

] = U?—a

(16.28)

3
E = ——I )

B0
or, becanse fi = (b —a)/3:
b —ar
E = — 16,29
5180 FHE) (16.2%)

Because the denominator of Eq. (16.29) is larger than for Eq. (16.24), the 3/8 rule is some-
what more accurate than the 1/3 rule,

Simpson’s 173 mule is usually the method of preference because it aftains third-order
accuracy with three points rather than the four points required for the 3/8 version. How-
ever, the 3/8 rule has utility when the number of segments is odd. For instance, in Example
16.4 we used Simpson’s rule to integrate the function for four segments. Suppose that you
desired an estimate for five segments, One option would be to use a composite version of
the trapezoidal rule as was done in Example 16.2. This may not be advisable, however, be-
canse of the large truncation error associated with this method. An alternative would be 1o
apply Simpson’s 1/3 rule to the first two segments and Simpson’s 3/8 rule to the last three
{Fig. 16.13). In this way, we could obtain an estimate with third-order accuracy across the
entire inferval.

Simpson’s 3/8 Rule
Problem Statement.  ({a) Use Simpson’s 3/8 rule to integrate

Fix) =02+ 25x — 200x% + 675x" — 900x* + 400x°

from ¢ = 0 o b = 0.8 (h) Use it in conjunction with Simpson’s 1/3 rule to integrate the
same function for five segments.

Solution.  (a) Asingle application of Simpson’s 3/8 rule requires four equally spaced points:

Fiy =02 FI0.2667) = 1.432724
FU0.5333) = 3487177 F(0.8) = 0.232
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Flark

/

1 )

N\ *

1] -
] 92 04 06 08 ¥
1/3 rule 38 rule

FIGURE 16.13 - . _
[Hustration of how Simpson’s 1,73 and 3/8 rules can be opplied in tandem to handle muliiple
opplicotions with odd numbers of intervals.

Using Eq. (16.28):
0.2+ 301432724 + 3487177y 4+ 0.232

=038 5 = 1.51970
() The data needed for a five-segment application (i = 0.16) is
F(0) = 0.2 F(0.16) = 1.206919

Fl0.32) = 1,743303 F0.48) = 3. 186015
Fi0.64) = 3.181929 F0.80) = 0.232
The integral for the first two segments is obtained using Simpson’s 1/3 rule:

0.2 + 41296919} + 1.743393
I =032 S 5 s = (1.3803237

For the last three segments, the 38 rule can be used to obtain

143393 4 3(3. 543 23
!:(}.481?4 393 4+ 3 136018+ ]31929}+022:I.2{34?54

The total integral is computed by summing the two results:
I = 0.3803237 + 1.264754 = 1.645077
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16.5

16.6

HIGHER-ORDER NEWTON-COTES FORMULAS

As noted previously, the trapezoidal rule and both of Simpson’s rules are members of a
family of integrating equations known as the Newton-Coles closed integration formulas,
Some of the formulas are summarized in Table 16.2 along with their truncation-error
estimales.

Notice that, as was the case with Simpson’s 1/3 and 3/8 rules, the five- and six-point
formulas have the same order error. This general characteristic holds for the higher-point
formulas and leads to the result that the even-segment—odd-point formulas (e.g.. 1/3 rule
and Boole’s rule) are usually the methods of preference.

However, it must also be stressed that, in engineering and science practice. the higher-
order (i.c., greater than four-point) formulas are not commonly used, Simpson’s rules are
sufficient for most applications. Accuracy can be improved by using the composite version,
Furthermore, when the function is known and high accuracy is required. methods such as
Romberg integration or Gaunss quadrature, described in Chap. 17, offer viable and attrac-
tive alternatives,

INTEGRATION WITH UNEQUAL SEGMENTS

To this point, all formulas for numerical integration have been based on equispaced data
points. In practice, there are many situations where this assumption does not hold and we
must deal with unequal-sized segments. For example, experimemtally derived data 15 often
of this type. For these cases, one method is to apply the trapezoidal rule to each segment
and sum the resulis:

.fl{-rﬂ 1)+ .f{-xn)

— Slagh+ filw) + hszﬁi]' + flxa) P (16.30)
2 2 2
where h; = the width of segment i, Note that this was the same approach used Tor the com-

posite trapezoidal rule. The only difference between Eqs. (16,167 and (16,307 1s that the #'s
in the former are constant,

I

TABLE 16.2 MNewion-Cotes closed integration formulas, The fermulas are presented in the formai of Eq. (16.13)
so that the weighting of the data points to estimate the average height is apparent. The step size is
given by h = (b —a)/n.

Segments
(8] Points Name Formula Truncation Error
i 2 Trapezsidal s b m —-11 /20 T
7 3 Smpsons 13 e b —-a) w —{1 G0 P
3 e Shpmons 378 whe b —a) fu0) +3t0) }; L fo —(3/800W5 Fig
. 5 Soele’s ruls “’_m?fl.ruH EFSEF NS 17!é'(ﬁv33+3?|fl.r_‘j+ FFixg) (80457 1o e
5 4 " ‘r}V#,H,m]+75,l"i.n]+5'3}[.1:!+50ji,1:]+75,l“i.r_-3+ 19 (1) (3751 2. 0967 £ )

288
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EXAMPLE 16.6

Trapezoidal Rule with Unequal Segments

Problem Statement.  The information in Table 16.3 was generated using the same poly-
nomial employed in Example 16.1. Use Eq. (16.30) to determine the integral for this data.
Recall that the correct answer is 1.640533,

TABLE 16.3 Data for f{x) = 0.2 + 25¢ — 200x" + 675x" — 900x* + 400y,
with unequally spaced values of x.
) )
000 (0, 200000 .44 2 BAZDES
0,12 | 306529 0.54 3505297
022 1.30524) BT A B1ese
0.32 1./743393 0.0 2. 363000
0,36 2074303 080 232000
.40 2456000
Solution.  Applying Eq. (16.30) vields
(.24 1.309729 1.300720 + 1305241
=112 + + 010 +
2
2363 +0.232
+--- 40 IU; = [.594801

2

which represents an absolute percent relative error of g, = 2.8%.

16.6.1 MATLAB M-file: -rapunag

A simple algorithm to implement the trapezoidal rule for unequally spaced data can be
written as in Fig. 16.14. Two vectors. x and v, holding the independent and dependent vari-
ables are passed into the M-file. Two error traps are included to ensure that (a) the two vec-
tors are of the same length and (b} the x's are in ascending order. A loop is employed to
generate the integral. Notice that we have modified the subscripts from those of Eq. (16.30)
to account for the fact that MATLAB does not allow zero subscripts in arrays.

An application of the M-file can be developed for the same problem that was solved in
Example 16.6:

== x = [0 .12 ,22 .32 .36 .4 .44 .54 .64 T .8]:
==y o= 0L, 2+25%-200%, "2+070%%, " 3-000%x, " 4+400%x.75;
»a Crapunedg i,y
ans =

1.5%48

which is identical to the result obtained in Example 16.6.
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16.7

fanction integr = trapunedgli=,.v)

% trapunedgix,y):

£ tpplies the trapercidal rule to determine the integral
% for n data points {x, v] where x must be in ascending
% order

% input:

% ¥ = independent variakls

% ¥ = dependenc varizble

¥ otk

% integr = integral

R e R
if lengkEhiyl-=n, error{'x and v must be sama length'); end
e {l;
fop T = lan]

if wle+l)=xiid

error{'x values must be in ascending order'};

e

e s R T R e
end
iyl e

FIGURE 16.14
hadile 1o imp|grnor!r thi hupu;:?midr_ﬂ rube for '._inr:quu”y 5puccd dara,

16.6.2 MATLAB Funchion: trapz

MATLAB has a built-in function that evaluates integrals for data in the same fashion as the
M-file we just presented in Fig. 16.14. It has the general syntax

= trapz(-, -]

where the two vectors, - and -, hold the independent and dependent variables, respectively,
Here is a simple MATLAB session that uses this function to integrate the data from
Table 16.3;

== x o= [0 .12 .22 .32 .36 .4 .44 .54 .64 T BI;
mmoy o= (L A+A5%a-200 e, A+ ETE Y, " EA-500% e, M+ 400, 5,

== brapzix,v)
aAng =

1.5048

OPEN METHODS

Recall from Fig. 16.6b that open integration formulas have limits that extend beyond the
range of the data. Table 16.4 summarizes the Newton-Cotes open integration formidas. The
formulas are expressed in the form of Eq. (16.13) so that the weighting factors are evident,
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TABLE 16.4 MNewton-Cotes open integration formulas, The formulas are presented in the format of Eq. {16.13)
so that the weighting of the data points to estimate the average height is apparent. The step size is
given by # = (b —a)fn.

Segments
1} Points MName Formula Truncation Error
2 ! Midgaint rathod i —aifix) /3 £
3 2 {fr - ﬂ)w 1254 )
P 3 “’_Mk‘.f[.m —.f[;'ﬂ-l-ﬁj-{.t.‘n] 474505 Fi9e)
5 a T it + f{.r:};_r'[m'— F1f i) 95 Ladin £
5 5 (b - ) THfta) - |f1f[;z} + 20  (ra) = 14 fix) + 11 fixs) 141,/ 1407 FO e

iy

As with the closed versions, successive pairs of the formulas have the same-order error.
The even-segment-odd-point formulas are usually the methods of preference because they
require fewer points to attain the same accuracy as the odd-segment—even-point formulas.

The open formulas are not often used for definite integration. However, they have util-
ity for analyzing improper integrals. In addition. they will have relevance to our discussion
of methods for solving ordinary differential equations in Chaps. 18 and 19,

16.8 MULTIPLE INTEGRALS

Multiple integrals was widely used in engineering. For example, a general equation to
compute the average of a two-dimensional function can be written as [recall Eq. (16.7)]

S Fx vyd)
[ —cybh —ay

f= (1631)
The numerator is called a dowuble integral.

The techniques discussed in this chapter {(and Chap. 17} can be readily employed to
evaluate multiple integrals. A simple example would be to take the double integral of a
function over a rectangular area (Fig, [6.15).

Recall from calculus that such integrals can be computed as iterated integrals:

i h [ W
f (f fix, _v]ld,r) dv = f ([ fix, ,1‘}'(!}‘) idx (16.32)

Thus, the integral in one of the dimensions is evalonated first. The result of this first inte-
gration is integrated in the second dimension. Equation (16.32) states that the order of in-
tegration is not important.

A numerical double integral would be based on the same idea. First, methods such as
the composite trapezoidal or Simpson’s rule would be applied in the first dimension with
each value of the second dimension held constant. Then the method would be applied to in-
tegrate the second dimension, The approach is illustrated in the following example.
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EXAMPLE 16.7

F, vid

FIGURE 16.15
Double integral os the area under the funchion surtace,

Using Double Integral to Determine Average Temperature

Problem Statement. Suppose that the temperature of a rectangular heated plate is de-
scribed by the following function:

Tix, v) = 2xy 4 2x — x° = 23" + 40

If the plate is 8 m long (v dimension) and 6 m wide { v dimension), compute the average
temperature,

Solution.  First, let us merely use two-segment applications of the rapezoidal rule in each
dimension. The temperatures at the necessary x and y values are depicied in Fig. 16,16,
Note that a simple average of these values is 47.33, The function can also be evaluated an-
alytically to vield a result of 58.66667.

To make the same evaluation numerically, the trapezoidal rule is first implemented
along the x dimension for each v value, These values are then integraied along the v di-
mension 1o give the final result of 2688, Dividing this by the area vields the average tem-
perature as 2688/(6 = §) = 56,

Now we can apply a single-segment Simpson’s 1/3 rule in the same fashion. This results
in an integral of 2816 and an average of 58.66667, which is exact. Why does this occur? Re-
call that Simpson’s 1/3 rule yielded perfect results for cubic polynomials. Since the highest-
order term in the function is second order, the same exact result occurs for the present case.

For higher-order algebraic Tunctions as well as transcendental Tunctions, it would be
necessary (0 use composite applications to atiain accurate integral estimates, In addition,
Chap. 17 introduces techniques that are more efficient than the Newton-Cotes formulas for
evaluating integrals of given Tunctions. These often provide a superior means to implement
the numerical integrations for multiple integrals,
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FIGURE 16.16 _
Mumerical evalualion of a double inlegral using the tworsegment apezaidal nle,
¥ 4 L)
iu o g . 403 . a8 .
&+ P i . 2{1{13 +EBe
72 G4 24 72 + 2{64) + 24
» . o= -0 Z1E0 " >
(6 - o) 256+ 21496) - 448 _
4
PROBLEMS

16.1 Derive Eq. (16.4) by integrating Eq. (16,30
16.2 Evaluate the following integral:

4
f il—e Pydx
0

{a) analytically, (b} single application of the trapezoidal rule,
{c) composite trapezoidal rule with i = 2 and 4. {d) single
application of Simpson’s /3 rule, {e) composite Simpson’s
173 rule with i = 4, and (F) Simpson’s 3/8 rule. For each of
the numerical estimates (b} through (F), determine the per-
cent relative error based on (a).

16.3 Evaluate the following integral:

T2
f {0+ 3cosxidy
0

{a) analytically, (b} single application of the trapezoidal rule,
(¢) composite trapezoidal rule with n = 2 and 4, (d}) single
application of Simpson’s 1/3 rule, (e} composite Simpson’s
143 rule with n = 4, and () Simpson’s 3/8 rule. For each of
the numerical estimates (b) through (), determine the per-
cent relative error based on (a),

16.4 Evaluate the following integral:

4
f (1= x — 4 2%y dx

(a) analytically, (b} single application of the trapezoidal rule,
{e) composite mapezoidal rule with n = 2 and 4, (d) single

application of Simpson’s | /3 rule, {e) Simpson’s 3/8 rule,
and (F) Booles rule. For each of the numerical estimates (b)
through (F). determine the percent relative error based on (a).
16.5 The function

fivy=e"

can be uvsed to generate the lollowing table of unequally
spaced data;

095 1.2
03BGS 03012

[

Ay 1 Ge0dE

0.3 (]

07408 046065

07
0. 4565

Lvaluate the integral from o = 0 to b = 1.2 using (a} ana-
Ivtical means, (b} the trapezoidal rule, and {c) a combination
of the rapezoidal and Simpson’s rules wherever possible o
attain the highest accuracy, For (h) and (¢}, compute the per-
cent relative error.

16.6 Evaluate the double integral

1 a4
f j =3 +xvidrdy
=2 J

(a) analytically, (b} using the composite trapezoidal rule
with n = 2, and (¢} using single applications of Simpson’s
1/3 rule, For (b} and (e), compute the percent relative error,
16.7 Lvaluate the triple integral

4 fi 3
f f f ix* = 2vaddx dvd:
—4 .J0 -1
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FIGURE P16.9

Wialer exerting pressure on the upstream face of a dom: (- | side view showing lorce increasing
linearly with depth; |- | front view showing width of dam in melers.

{a} analytcally. and (b} using single applications of
Simpson’s 1/3 rule. For (b). compute the percent relative
EITOr.

16.8 Determine the distance traveled from the following
velocity data:

TZ 3% 43 6
I T N 85

{a) Use the trapezoidal rule.

{hy Fit the data with a cubic eguation wsing polynomial
regression. Integrate the cubic equation o determine the
distance.

16.9 Water exerts pressure on the upstream face of a dam as

shown in Fig. P16.9, The pressure can be characterized by

plzd = pg(l -2

where piz) = pressure in pascals (or N/m?) exerted at an
elevation ¢ meters above the reservoir bottom; p = density
of water, which for this problem is assumed to be a constant
P kefm*: ¢ = acceleration due w gravity (9.81 m/s”); and
D = elevation (in m} of the water surface above the reser-
vodr bottom. According o Eg. (P16.9), pressure increases
linearly with depth, as depicted in Fig. P16.9%, Omitting at-
mospheric pressure (becanse it works against both sides of
the dam face and essentially cancels out). the total force f
can be determined by multiplying pressure times the area of
the dam face {as shown in Fig. P16.95), Because both pres-
sure and area vary with elevation, the total force is obtained

by evaluating

fi=

i
f prwizD = z)dz
o

where wiz) = width of the dam face (m) at elevation z
(Fig. P16,95), The line of action can also be obtained hy
evaluating

- J:f’ pozwiz)D — 2)dz
g’ pew(z)D = 2y dz

I

Lse Simpson's rele to compute f; and d.
16 1 The foree on a sailboat mast can be represented by the
following function:

a ) oA

(z) = 200
o =205

where ¢ = the elevation above the deck and i = the height
of the mast. The total force F exerted on the mast can be de-
termined by integrating this function over the height of the
st

v
F=j Flzid:
i

The line of action can also be determined by integration:

W zfizydz

Jy ferdz

{a) Use the composite trapezoidal rule w compute £ and J
for the case where H o= 30 (n = 6).

{b) Repeat (a). but vse the composite Simpsen’s 1/3 rule.
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Numerical Integration
of Functions

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce vou to numerical methods for
integrating given functions. Specific objectives and topics covered are

*  Understanding how Richardson extrapolation provides a means to create a
more accurate integral estimate by combining two less accurate estimates,

*  Understanding how Gauss quadrature provides superior integral estimates by
picking optimal abscissas at which to evaluate the function.

*  Knowing how to use MATLARB’s built-in functions quad and quadl to
integrate functions.

17.1 INTRODUCTION

In Chap. 16, we noted that functions to be integrated numerically will typically be of two
forms: a table of values or a function, The form of the data has an important influence on
the approaches that can be used to evaluate the integral, For tabulated information, you are
limnited by the number of points that are given. In contrast, if the function is available, you
can generate as many values of f{x) as are required to attain acceptable accuracy.

At face value, the composite Simpson’s 1/3 rule might seem to be a reasonable tool for
such problems. Although it is certainly adequate for many problems, there are more effi-
cient methods that are available. This chapter is devoted to three such technigues. Both
capitalize on the ability to generate function values to develop efficient schemes for
numerical integration.

The first technique i1z based on Richardson’s extrapelation, which is a method for
combining two numerical integral estimates to obtain a third, more accurate value. The
computational algorithm for implementing Richardson’s extrapolation in a highly efficient
manner is called Romberg integration. This technique can be used to generate an integral
estimate within a prespecified error tolerance. 305
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17.2

The second method is called Gawsy guadraniere, Recall that, in Chap. 16, values of
fix) for the Newton-Cotes formulas were determined at specified values of x. For exam-
ple, it we used the trapezoidal rule to determine an integral, we were constrained to take the
weighted average of f{x) at the ends of the interval. Gauss-quadrature formulas employ x
values that are positioned between the integration limits in such a manner that a much more
accurate integral estimate results,

The third approach is called adaptive guadranre. This techniques applies composite
Simpson’s 1/3 rule to subintervals of the integration range in a way that allows error esi-
mates to be computed. These error estimates are then used to determine whether more
refined estimates are required for a subinterval. In this way, more refined segmentation
is only used where it is necessary. Two built-in MATLAB functions that use adaptive quad-
rature are illustrated.

ROMBERG INTEGRATION

Romberg integration is one echnique that is designed 1o atain efficient numerical inmegrals
of Tunctions. It is quite sirmilar 1o the echniques discussed in Chap. 16 in the sense that it
is based on successive application of the trapezoidal rule. However, through mathematical
manipulations, superior results are attained for less effort,

17.2.1 Richardson’s Extrapolation

Techniques are available o improve the results of numerical integration on the basis of the
integral estimates themselves. Generally called Richardson s extrapolation, these methods
use two estimates of an integral 1o compute a third, more accurate approximation,

The estimate and the error asseciated with the composite rapezoidal rule can be rep-
resented generally as

- fthy- Eih)

where /- the exact value of the integral, /(/) - the approximation from an m-scgment
application of the trapezoidal rule with step size i - (b ad/n,and E(h) - the truncation
error. IF we make two separate estimates using step sizes of fy and by and have exact val-
ues for the error:

Ty Elfn) - Tthy) - Ellg) (17.1)
Now recall that the error of the composite trapezoidal rule can be represented approxi-
mately by Eq. (16.21) [withn - (b ad/h]:

bh-

[
B h=f (17.2)

F:

If it is assumed that £ 1s constant regardless of step size, Eq. (17.2) can be used to deter-
ming that the ratio of the two errors will be
Ethy) h

Elh2) E {17.3)

This calculation has the important effect of removing the term f° from the computation.
In so doing, we have made it possible to wilize the information embaodied by Eq. (17.2)
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EXAMPLE 17.1

without prior knowledge of the function’s second derivative. To do this, we rearrange
Eq. (17.3) o give

. (-ﬁl)2
El(hyy - Eihz)| —
ha

which can be substituted into Eq. (17.1)
iy
Fhyy- Eihz) o fihay- Edhyn

which can be solved for

fhyy- Tihs
Ehs) - L{}]
1o (hy /i)

Thus, we have developed an estimate of the truncation ¢rror in terms of the integral esti-
mates and their step sizes, This estimate can then be substitited into

I dhy - Eihg)

to yield an improved estimate of the integral:

[ Ik lIf{hz}- T (17.4)

(i /ha)?

It can be shown (Ralston and Rabinowitz, 1978) that the error of this estimate 1s
O(h*). Thus, we have combined two trapezoidal rule estimates of O (A7) to yield a new es-
timate of 2 (h*). For the special case where the interval is halved (hy - hy/2). this equa-
tion becomes

4 1
f- if{hg}- i”hl} (17.5)

Richardson Extrapolation

Problem Statement. Use Richardson extrapolation to evaluate the integral of f(x) -
0.2- 25x . 20067 6757 900kt 400x° froma - Otoh- 0.8,

Solution.  Single and composite applications of the trapezoidal rule can be used to evalu-
ate the integral:

Segments : Integral &
| B 0.1728 HY 5%
2 0.4 1.05688 34.9%
4 02 14848 o5%

Richardson extrapolation can be used to combine these resulis to obtain improved estimates
of the integral. For example, the estimates for one and two segments can be combined
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EXAMPLE 17.2

o yield
4 1
- i“.ﬂﬁsgl' ELl['J.l‘a’ZSJl- 1.367467

The error of the improved integralis F, - 1.640533 - 1367467 - 0.273067(s, - 16.6%).
which is superior o the estimates upon which it was based.
In the same manner, the estimates for two and four segments can be combined to give

4
- i{l.4343)- (1.O6BE)Y - 1.623467

1
3
which represemts an error of £, - 1640533 - 1623467 - 0.017067 (5, - 1.0%),

Equation (17.4) provides a way (0 combine two applications of the trapezoidal rule
with error @ (h7) to compute a third estimate with error O(4*). This approach is a subset of
amore general method for combining integrals to obtain improved estimates, For instance,
in Example 17.1, we computed two improved integrals of O(h") on the basis of three trape-
zoidal rule estimates. These two improved integrals can, in turn, be combined to vield an
even better value with Q(A%). For the special case where the original trapezoidal estimates
are based on successive halving of the step size, the equation used for Q(A%) accuracy is

- —Iy- —f (176}

where [y and [ are the more and less accurate estimates, respectively, Similarly, two
O(h") results can be combined to compute an integral that is O(h®) using

f B S | 17.7
s &G G

Higher-Order Corrections

Problem Statement.  In Example 17.1, we used Richardson’s extrapolation to compute
two integral estimates of OB, Utilize Eq. (17.6) to combine these estimates to compute
an integral with Q(h®).

Solution.  The two integral estimates of (%) obtained in Example 17.1 were 1.367467
and 1.623467. These values can be substituted into Eq. (17.6) to yield

I %{I.GZMG?J- II—S(I.367‘46T}- 640533

which is the exact value of the integral,

17.2.2 The Romberg Integration Algorithm

Naotice that the coefficients in each of the extrapolation equations |Egs. (17.5), (17.6), and
{17.7)] add up to 1. Thus, they represent weighting factors that, as accuracy increases,
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place relatively greater weight on the superior integral estimate. These formulations can be
cxpressed in a general form that is well suited for computer implemeniation;
Lo
4 e T
461

fj_k : (178}
where £; x and [;, - the more and less accurate integrals, respectively, and 7, 4 -
the improved integral. The index k signifies the level of the integration, where & - | cor-
responds to the original trapezoidal rule estimates, k - 2 corresponds to the O (h*) esti-
mates, & - 3 tothe (A"}, and so forth, The index j is used to distinguish between the more
if - 1) and the less (j) accurate estimates, For example, for & - 2 and 7 - 1, Eg. (17.8)
becomes

4y h

fia 3

which is equivalent o Eq. (17.5).

The general form represented by Eq. (17.8) is atributed 1o Romberg, and its system-
atic application to evaluate integrals is known as Romberg integration, Figure 17.1 15 a
graphical depiction of the sequence of integral estimates generated using this approach.
Each matrix corresponds 1o a single iteration, The Tirst column contains the rapezoidal rule
evaluations that are designated 1)1, where j - 1 s for a single-segment application (step
sizeis b a), f - 2is for a iwo-segment application [step size is (b - a)/21 7 - 3 is for
a Tour-segment application [step size is (b @) /4], and so Torth, The other columns of the
matrix are generated by systematically applying Eq. (17.8) 1w obtain suceessively bener
estimates of the imegral,

For example, the first iteration (Fig, 17.1a) involves computing the one- and two-
segment trapezoidal rule estimates (4 and £ ;). Equation (17.8) 1s then used 1o compuie
the element 1, - 1.367467, which has an error of Q ().

FIGURE 17.1 |
Graphical depiction of the sequence of integral estimates generated using Romberg integration.
[- | First iteraficn. | ) Second teration. | | Third iteration.

S ] Sy S
0172800 ;p 1.367467
{al 1.068800
0.172800 1.367467 ;; 1.640533
1.068800 1.623467
(B) 1.484800
0.172800 1.367 467 1.640533 ;; 1.640533
1.068800 1.623467 ;: 1.640533
1484800 _,__.-_--—""; 1.639467
(el 1.600800
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17.3

Now, we must check to determine whether this result is adequate for our needs, As in
other approximate methods in this book, a termination, or stopping, criterion is required 1o
assess the accuracy of the resulis. One method that can be employed for the present pur-
poses is

TRE ‘—f” L ‘ - 100% (179)

Iy

where £, -+ an estimate of the percent relative error, Thus, as was done previously in other
iterative processes, we compare the new estimate with a previous value. For Eq. (17.9), the
previous value is the most accurate estimate from the previous level of integration (i.e., the
k- 1 level of integration with § - 2). When the change between the old and new values
as represented by £, 18 below a prespecified error criterion £,, the computation is termi-
nated, For Fig. 17.1a, this evaluation indicaies the following percent change over the
course of the first iteration;

1.367467 - 1.068800
Eu 1367467 100% - 21.8%

The object of the second iteration (Fig. 17.1b) is to obtain the O(h") estimate—/, 3.
To do this, a four-segment trapezoidal rule estimate, f5 - L4848, is determined. Then it
is combined with [} using Eq. {(17.8) to generate fr 2 - 1623467, The result is, in turn,
combined with £y 7 to vield T 2 - 1640533, Equation {17.9) can be applied to determine
that this result represents a change of 1.0% when compared with the previous result fo .

The third iteration (Fig. 17.1c) continues the process in the same fashion. In this case,
an cight-segment trapezoidal estimate is added (o the first column, and then Eq. (17.8) is
applied to compute successively more accurate integrals along the lower diagonal. After
only three iterations, becavse we are evaluating a fifth-order polynomial, the result
(4 1.640533) 15 exact.

Romberg integration is more efficient than the trapezoidal rule and Simpson’s rules.
For example, for determination of the integral as shown in Fig. 17.1, Simpson’s 1/3 rule
would require about a 48-segment application in double precision to yield an estimate of
the integral to seven significant digits: 1.640533. In contrast, Romberg integration pro-
duces the same result based on combining one-, two-, four-, and eight-segment trapezoidal
rules—that is, with only 15 function evaluations!

Figure 17.2 presents an M-file for Romberg integration. By vusing loops, this algorithin
implements the method in an efficient manner. Note that the function uses another function
trap o implement the composite trapezoidal rule evaluations (recall Fig. 16.10).

GAUSS QUADRATURE

In Chap. 16, we employed the Newton-Cotes equations, A characteristic of these formulas
{with the exception of the special case of unequally spaced data) was that the integral esti-
mate was based on evenly spaced function values, Consequently, the location of the base
points used in these equations was predetermined or fixed.
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function intg = rombergifunc,a.b,es, maxit)

% romberg{func,.s, b, es);

% Romberg integraticn.

¥ input:

% fiine = name of function to be integrated

% &, b = rntegration limits

% g5 = loptionall stop criterion {%); default = 0.00001
2 maxit = (optional) mex allow iterations: default = 30
% output:

%

intg = integral estimate

% af necessary, assign default wvalues
if nargin=5, maxit=30; =nd %if maxit blank set tao 30
if margined, es=0.00001; end %if ez blank set to {.00001

R
LS BT e e R e e R R
T
while iter<smaxit
iter = iter+l;

TERRGL G s
Tixter+l 1) = trap(func,a,;b,n}t;
for k = 2:iter+l
J = 2+iter-k;:
Eig. k] = (dofle-1 05T i9+8 k-1 -Fi], k=1 i /Ata{k=—13-1%;
errd
ea = abs({I{l,iter+1}1-1(2,iter)}/I{l,ikter « 11}*100;
if saz=es, break; end
end
il Brn e n BRI B B e

FIGURE 17.2

Mile o implement Romberg integrafion.

For example, as depicted in Fig. 17,34, the trapezoidal rule is based on taking the area
under the straight line connecting the function values at the ends of the integration interval.
The formula that is used (o compute this area is

m_f[d}- S

I b
{ 2

{17.10%
where ¢ and b - the limits of integration and b - @ - the widih of the integration interval.
Because the trapezoidal rule must pass through the end points, there are cases such as
Fig. 17.3a where the formula results in a large error.

Now, suppose that the constraint of fixed base points was removed and we were free
o evaluaie the area under a straight line joining any two poinis on the curve, By position-
ing these points wisely, we could define a straight line that would balance the positive and
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FIGURE 17.3

{- | Grophical depiction of the trapezoidal wle os the area under the straight line joining fixed
end points. |- | An impraved integral sstimate obinined by laking the area under the stroight line
pexssing th cuqh twio intermediate points. By posifioning these points wisely, the positive and
negalive e ore better balanced, and on imoroved integral estimate results.

negative errors. Hence, as in Fig. 17.3h, we would arrive at an improved estimate of the
integral.

Crauss guadratire 15 the name for a class of techniques to implement such a strategy.
The particular Gauss guadrature formuolas described in this section are called Geuss-
Legendre formulas, Before describing the approach, we will show how numerical integra-
tion formulas such as the trapezoidal rule can be derived using the method of undetermined
coefficients. This method will then be employed to develop the Gauss-Legendre formulas.

17.3.1 Methed of Undetermined Coefficients

In Chap. 16, we derived the trapezoidal rule by integrating a linear interpolating polyno-
mial and by geometrical reasoning, The method of undetermined coefficients offers a third
approach that alse has wtility in deriving other integration techniques such as Gauss
quadrature.

To illustrate the approach, Eq. (17.10) is expressed as

1o e fla) oy fib) (17.11)
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w=1
b= a) b—a -‘-
2 2
{al
; ¥y =X
[B =
2 oy
b= a =
2
§2)]

Rl'lf._.'lfé-‘_i |:.‘-f)' II"'-.-'-’]§=.

bry the ropezoidal wle: | ] a oo

where the ¢'s -

constants. Now realize that the trapezoidal rule should vield exact results

when the function being integrated is a constant or a siraight line, Two simple equations

that represent these cases are v -
should hold:

sl )2
o Oy j | dx
- i a2

and

or, evaluating the integrals,

[ TR |'I.J' o

I and v - x (IFig. 17.4). Thus, the following equalities

Xy
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and
beoa b a
e ¢ -0
4] 7 H 7
These are two equations with two unknowns that can be solved for
b a
[
0 1 7

which, when substituted back into Eq. {1711}, gives

2
which is equivalent to the trapezoidal rule.

} .
[ @ flay- %nm

17.3.2 Derivation of the Two-Point Gauss-Legendre Formula

Just as was the case for the previous derivation of the trapezoidal rule. the object of Gauss
quadrature is to determine the coefficients of an equation of the form

ooegfixg)- o fixg) (17123

where the ¢'s - the unknown coefficients, However, in contrast to the trapezoidal rule that
used fixed end points @ and b, the function arguments vy and vy are not fixed ar the end
points, but are unknowns (Fig. 17.5). Thus, we now have a total of four unknowns that
must be evaluated, and consequently, we require four conditions to determine them exactly,

Just as for the trapezoidal rule, we can obtain two of these conditions by assuming that
Eq. (17.12) fits the integral of a constant and a linear function exactly, Then, to arive at the
other two conditions, we merely extend this reasoning by assuming that it also fits the in-
tegral of a parabolic (v - %) and a cubic (v - x7) function. By doing this, we determine
all four unknowns and in the bargain derive a linear two-point integration formula that is

FIGURE 17.5 . _
Graphical depiction of the unknown voriables 1 and x; for integration by Gauss quadrature.

Hixyd
Fix)

o
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exact for cubics, The Tour equations o be solved are

|
[T o f lde 2 (17.13)
1
1
Oplg - Ly f xdx . 0 (17.14)
i
' 2
c'[u’%- {'1_1';?- f dx - 3 (17.15)
1 B
!
coxy o C1xg - f iy 0 (17.16}
1

Equations (17.13) through (17.16) can be solved simultaneously for the four un-
knowns. First. solve Eq. (17.14) for ¢; and substitute the result into Eq. (17.16), which can
be solved for

¥ 2
XyooXy

Since xy and x; cannot be equal, this means that xp - - x;. Substituting this result into
Eq. (17.14) vields ¢y - ¢;. Consequently from Eq. {17.13) it follows that

o o) i
Substituting these results into Eq. (17.13) gives
I
3

Xy % 05773503 ..,

- L5T73503 ...

R

Therefore, the two-point Gauss-Legendre formula is

- I(—E) f(]—_) {(17.17)
3 3

Thus, we arrive at the interesting result that the simple addition of the function values at
x- -1/ Fandl; 3 yields an integral estimate that is third-order accurate.

MNotice that the integration limits in Eqs. (17.13) through (17.16) are from - 1 to |. This
was done to simplify the mathematics and to make the formulation as general as possible.
A simple change of variable can be used to translate other limits of integration into this
form. This is accomplished by assuming that a new variable x; is related to the original
variable x in a linear fashion, as in

Xoodpty - iy {17.18)
If the lower limit, x - @, corresponds to xgy - - L. these values can be substituted into
Eq. (17.18) to yield

a - gl 1)y (17,19}

Similarly, the upper limit, x - b, corresponds to xy - 1, to give

beoagily ay {17,200
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EXAMPLE 17.3

Equations (17.19) and (17.20) can be solved simultaneously for

b b
tyy - and da 3 {1721
which can be substituted into Eq. (17.18) to vield
.. h- ay- (b alxy (17.22)
2
This equation can be differentiated to give
dx- 2 '2 L dxg (17.23)

Equations (17.22) and (17.23) can be substituted for x and « x, respectively, in the equation
to be integrated. These substitutions effectively transform the integration interval without
changing the value of the integral. The following example illustrates how this is done in
practice.

Two-Point Gauss-Llegendre Formula
Problem Statement.  Use Eq. (17.17) to evaluate the integral of
Sy 020 250 20007 - 6750 900x* - 40047
between the limits x - 0o 0.8, The exact value of the integral is 1.640533,

Solution,  Before integrating the function, we must perform a change of variable so that
the limats are from - 1 te- 1. To do this, we substitwe ¢ - Oand & - 0.8 into Egs. (17.22)
and (17.23) 1o yield

- 04 Odxy and dy - Uddxy

Both of these can be substituted into the original equation o yicld

L%
f (0.2 250 20007 675¢% . 900x* . 400x) dx
i

1
: f [0.2- 25(0.4- Odxy)- 200004 0.4x0° 675(0.4- 0.4x,)
1
S 000004 - 04y, 400004 0.4x,)°10.4dx,

Therefore. the right-hand side is in the form that is suitable for evaluation using Gauss
quadratyre. The transformed function can be evaluated atx, - - 1/ 3 as 0.516741 and at
xg o 17 3 as 13053837, Therefore, the integral according to Eqg. (17.17) is 0.516741 -
1.305837 - 1.822578. which represents a percent relative error of - [1.1%. This result is
comparable in magnitude to a four-segment application of the trapezoidal rule or a single
application of Simpson’s 1/3 and 3/8 rules. This later result is o be expected because
Simpson’s rules are also third-order accurate. However, because of the clever choice of
base points, Gauss quadrature attains this accuracy on the basis of only two function
evaluations,
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TABLE 17.1 Weighting factors and function arguments used in Gauss-legendre formulas,

Weighting Function Truncation
Points Factors Arguments Error
2 cp - 1000000 xg - - 0577350269 C e
¢ - 10000000 X - OA77350269
3 cp - .5555556 wn - - DLFTASIEAET )
o (0.BEBEEEY xo 00
¢+ 0.5555356 k2 0774596669
4 cp - (1.3478548 xo- - 0851136212 AT
¢ - 0.6521452 N 0330981044
o 06521452 X O.339981044
ey - 03478548 X 0BATIZ6312
5 cp o 0LI3A9940 ¥o - - 0H0G179846 TS
¢ - 04786787 x o  0.538469310
¢ - L5683EEY Xz - 0D
¢y DAFRBGZRT X3 0538405310
ey 02369249 xa P06179846
& cp - 01713245 xo- - 0932440514 A
¢ - 03607616 N 661209386
o - 04679139 X - 0238619184
3 04679139 X (238419186
cq - 036076164 Xy 0661209386
es - 01713245 ks - 0932460514

17.3.3 Higher-Point Formulas

Beyond the two-point formula described in the previous section, higher-point versions can
be developed in the general form

oo fian)- e fivd- o a1 flxg ) {17.24)

where i - the number of points, Values for ¢'s and 47 for up to and including the six-point
formula are summarized in Table 17.1,

EXAMPLE 17.4  Three-Point Gauss-legendre Formula

Problem Statement.  Use the three-point formula from Table 17.1 to estimate the integral
for the same function as in Example 17.3.

Solution.  According to Table 17.1, the three-point formula is

1 - 05555556 (- 0.7745067) - (O.BZBEERO F(0) - 0.5555556 F(0.7745967)
which is equal to

F- 02813013 - 0.8732444 - 0.4859876 - 1.040533

which is exact.
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17.4

Because Gauss quadrature requires function evaluations at nonuniformly spaced poinis
within the integration interval, itis notappropriate for cases where the function is unknown,
Thus, it is not suited for engineering problems that deal with tabulated data. However, where
the function is known, its efficiency can be a decided advantage, This is particularly true
when numerous integral evaluations must be performed.

ADAPTIVE QUADRATURE

Although the composite Simpson’s 1/3 rule can certainly be used 1o estimate the integral of
given functions, it has the disadvantage that it uses equally spaced points, This constraint
does not take ino account that some functions have regions of relatively abrupt changes
where more refined spacing might be required. Hence, to achieve a desired accuracy, the
fine spacing must be applied everywhere cven though it is only needed for the regions of
sharp change. Adaptive quadrature methods remedy this situation by awtomatically adjust-
ing the step size so that small steps are taken in regions of sharp variations and larger steps
are taken where the Tunction changes gradually,

Most of these techniques are based on applying the composite Simpson’s 1/3 rule 1o
subintervals in a manner similar 10 how the irapezoidal rule was used in Romberg imegra-
tion, That is, the 1/3 rule 1s applied at two levels of refinement and the difference between
these two levels 1s used w estimate the truneation error, If the truncation error is accepiable,
no further refinement is required and the integral estimate for the subinterval is deemed
acceptable, If the error estimate 1s oo large, the step size is refined and the process repeated
until the error falls (o acceptable levels,

MATLAB includes two buili-in functions (o implement adaptive guadrature: guad
and guadl, The following section describes how they can be applied.

17.4.1 MATLAB Functions: - - - and - - - - -

MATLAB has iwo functions, both based on algorithms developed by Gander and Gauotschi
{2000}, for implementing adaptive quadrature:

= . This function uses adaptive Simpson quadrature, It may be more efficient Tor low
accuracics or nonsmooth functions.
. . This function uses what is called Lobatto quadrature, 1t may be more efficient

for high accuracies and smooth functions,

The following function syntax for the guad function is the same for the guadl
function:

g = gquadl(fun, a, b, tel, trace, pl, pzZ, . . .}

where fun is the function o be integrated, 2 and b - the integration bounds, tol - the
desired absolule error tolerance (default - 107 %), trace is a variable that when set to a
nonzero value causes additional computational detail to be displaved, and =1, 02, . . .
are parameters that you want 1o pass 1o fun, [t should be noted that array operators . *, ./
and .~ should be used in the definition of fun, In addition, pass empty matrices for col or
trace to use the default values,
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EXAMPLE 17.5

Adaptive Quadrature

Problem Statement.  Use quad to integrate the following function:
f
{r- g1 001 (x- r)*- 0.4

between the hmits x - Ot L Notethat forg - 03, » - 09, and 5 - 6, this is the built-
in fumzs function that MATLAB uses (o demonstrate some of its numercal capabilities,
The humpes function exhibits both flat and steep regions over a relatively short x range.
Hence, 1t is vseful for demonstrating and testing routines like quad and quadl. Note that
the humps function can be integrated analytically between the given Limits to vield an exact
integral of 29.85832539549867,

fixd-

&

Solution.  First, let’s evaluate the integral in the simplest way possible, using the built-in
version of humps along with the default tolerance:

== [ormat Long

= quad{fhumps, 0, 1)

ans =
20.85832612842764

Thus, the solution is correct to seven significant digits,
Next, we can solve the same problem, but using a looser tolerance and passing ¢. r. and
s as parameters, First. we can develop an M-file for the function:

function v = myhumps{x, g, 0. 8)
v o= Lo 0 tw-gr ™2 o« 0.0 ¢ Lo (w2004 - =5

Then, we can integrate it with an error tolerance of 10 * as in
== oguad(dBmyhumps, 0, 1, le-4, [],0.3,0.9,81

alls =

29.85812133214492

Notice that because we used a larger tolerance, the result is now only accurate to five sig-
nificant digits. However, although it would not be apparent from a single application, fewer
function evaluations were made and, hence, the computation executes faster.

PROBLEMS
17.1 Use Romberg integration to evaluate 17.2 Evaluate the following integral (a) analytically,
3 432 (b} Romberg integration (g, - 0.5%), {e) the three-point
f. f (2.1‘- —) dx Gauss  quadratere  formula, and {d) MATLAB cuad
I * function:
to anaccuracy of 5, + 0.5%. Your results should be presented 5
in the format of Fig, 17.1. Use the analytical solution of the I f 0054707 . 0864607 4.1562x°
(]

integral to determine the percent relative error of the result ob-
tained with Romberg integration. Check that #; is less than #,. © 6.2917x - 2dx
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17.3 Evaluate the following integral with (a) Romberg inte-
gration (g, - L3%) (b} the two-point Gavss guadrature
formula, and (¢) MATLAB guad and guadl functions:

I f xetdx
0

17.4 There is no closed form solution for the error function
2 “ b
erfla) - —_f ¢ Ty
B 1]

Use the (a) two-point and (b} three-point Gauss-Legendre
formulas to estimate erf( 1.5). Determine the percent relative
error for each case based on the true value, which can be de-
termined with MATLAB s built-in function ox £,

17.5 The force on a sailboat mast can be represented by the
following tunction:

H -
- f 2000 ==
ik (? L4

where 7 - the elevation above the deck and /- the height
of the mast. Compute F for the case where H - 30 using
{a) Romberg integration to a tolerance of £, -+ 0.5%, (b) the
two-point Gauss-Legendre formula, and (e} the MATLAB
muad function.

17.6 The roct-mean-square current can be computed as

) o Mot g

gt
fopes - -"f?—-ﬁ iiydr
For T 1. suppose that i(f) is defined as
iy 10e r,-'rs;in(lq'%) for 0 r-
iy 0

T2
forT/2- ¢ T

Evaluate the f,,,, using (a) Romberg integration 1w a wler-
ance of 0,19, (b) the two- and three-point Gauss-Legendre
formulas, and (¢} the MATLAB quad function,

17.7 The velocity profile of a fluid in a circular pipe can be
represented as

n
" 10(1 : i)
riy

where v - velocity, v+ radial distance measured out from
the pipes centerline, ry - the pipe’s radius, and 1 - a para-
meter, Determine the flow in the pipeifr - 0.75andn - 7
using (a) Romberg integration to a tolerance of 0.1%, (b} the
two-paint Cavss-Legendre formula, and (e) the MATLAB
guad function. Note that flow is equal to velocity times
anci,

17.8 The amount of mass transported via a pipe over a pe-
riod of time can be computed as

iz
M- f ey de
B

where M - mass (mg), ;- the initial time (min), £ - the
final time (miny, {r)- flow rate (m*/min), and cir) -
concentration (mgmﬁl. The tollowing functional repre-
sentations define the temporal variations in flow and
concentration;

Qiry- 9. deos ilhdr)
el S5 LT 2{,1].15r

Determine  the mass transporied between - 2 and
f; - 8 min with {a) Romberg integration to a tolerance of
0.1% and (b) the MATLAB cuad function.

17.9 Evaluate the double integral

T a4
f f ixt o 3T eyhdedy
- Ry

{(a) analytically and (b} using the MATLAB dklquad
function. Use help to understand how to implement the
funcrion.
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4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce yvou to solving initial-value
problems for ODEs (ordinary differential equations). Specific objectives and topics
covered are

®*  Understanding the meaning of local and global truncation errors and their
relationship to step size for one-step methods for solving ODEs.
*  Knowing how to implement the following Runge-Kutta (RK) methods fora
single ODE:
Euler
Heun
Midpoint
Fourth-order RK
Knowing how to iterate the corrector of Heun's method.
Knowing how to implement the following Runge-Kutta methods for systems
of ODEs:

Euler
Fourth-order RK

YOU'VE GOT A PROBLEM

e started this book with the problem of simulating the velocity of a free-falling
bungee jumper. This problem amounted to formulating and solving an ordinary
ditferential equation, the topic of this chapter. Now let’s return to this problem

and make it more interesting by computing what happens when the jumper reaches the end
of the bungee cord.

n
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To do this, we should recognize that the jumper will experience different forces de-
pending on whether the cord is slack or streiched. If it is slack, the sitwation is that of free
fall where the only forces are gravity and drag, However, because the jumper can now
move up as well as down, the sign of the drag force must be modified so that it always tends
o retard velocity,

dv ) O o

I g mgn{ir};u (18.1a)
where v is velocity (m/s), £ is time (), g is the acceleration due to gravity (9.81 m/s’), ¢y is
the drag coefficient (kg/m), and m is mass (kg). The signum function,' sign, returns a - 1 or
a 1 depending on whether its argument is negative or positive, respectively. Thus, when the
jumper is falling downward {positive velocity, sign - 1), the drag force will be negative
and hence will act to reduce velocity. In contrast, when the jumper is moving upward
{negative velocity, sign - - 1), the drag force will be positive so that 1t again reduces the
velocity.

Once the cord begins o streteh, it obviously exerts an upward force on the jumper. As
done previously in Chap. 7, Hooke’s law can be used as a first approximation of this force.
In addition, a dampening force should also be included to account for frictional effects as
the cord stretches and contracts. These factors can be incorporated along with gravity and
drag into a second foree balance that applies when the cord is stretched. The result is the
following differential equation:

du

di
where ks the cord’s spring constant (N/m), xis vertical distance measured downward from
the bungee jump platform (m), L is the length of the unstretched cord {m), and ¥ 15 a damp-
ening coefficient (N - s/m).

Because Eq. (18.16) only holds when the cord 15 stretched (v = L), the spring force
will always be negative. That is, it will always act o pull the jumper back up. The damp-
ening force increases in magnitude as the jumper’s velocity increases and always acts 1o
slow the jumper down,

IF we want to simulate the jumper’s velocity, we would initially solve Bq. (18 1a) unnl
the cord was fully extended. Then, we could switch to Eq. (18.14) for periods that the cord
is stretched. Although this is fairly straightforward, it means that knowledge of the
jumper’s position 18 required. This can be done by formulating another differential equa-
tion for distance:

dx
di

: k
- Sigﬂ{l-"j"ivz Co—{x L) iv (18.1h)
I i i

v {18.2)

Thus, solving for the bungee jumper’s velocity amounts to solving two ordinary dif-
ferential equations where one of the equations takes different forms depending on the value

"Seme computer Tanguages represent the signum function as sgn (), As represented here, MATLAR uses the
nomenclature sign =),
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18.1

18.2

of one of the dependemt variables, Chapters 18 and 19 explore methods for solving this and
similar problems invelving ODEs,

OVERVIEW

This chapter is devoted to solving ordinary differential equations of the form

dv

o iyl (18.3)

In Chap. 1. we developed a numerical method to solve such an equation for the velocity of
the free-falling bungee jumper. Recall that the method was of the general form

New value - old valee - slope - step size
or, in mathematical terms,
Vion- v obh (18.4)

where the slope ¢ is called an incremenr function. According to this equation, the slope es-
timate of ¢ is used to extrapolate from an old value v 1o a new value v, | over a distance
f. This formula can be applied step by step to trace out the trajectory of the solution into
the future. Such approaches are called one-step methods because the value of the increment
function is based on information at a single point i, They are also referred (o as Runge-
Kutta methods atter the two applied mathematicians who first discussed them in the carly
1900s, Another class of methods called mudtistep methods use information from several
previous points as the basis for extrapolating 1o a new value, We will describe multistep
methods briefly in Chap. 19.

Adl one-step methods can be expressed in the general form of Eq. (18.4), with the only
difference being the manner in which the slope is estimated. The simplest approach is (o
use the differential equation 1o estimaie the slope in the form of the first derivative at 1. In
other words, the slope at the beginning of the interval is taken as an approximation of the
average slope over the whole interval, This approach, called Euler’s method, is discussed
next, This is followed by other one-step methods that employ aliernative slope estimates
that result in more accurate predictions,

EULER’S METHOD
The first derivative provides a direct estimate of the slope at  (Fig, 18,13

- f(!.‘.l\'f]

where (5, v ) is the differential equation evaluated at ; and v;. This estimate can be sub-
stituted ino Eq. (18,1

Vi ¥ Sl (185}

This formula is referred o as Enler s method (or the Euler-Cauchy or point-slope method).
Aonew value of v is predicted vsing the slope (equal to the first derivative at the original
value of ¢) to extrapolate linearly over the step size b (Fig, 18.1).
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¥y
Predicted -
i errar
True
.
}J' ‘Ir.il 1 l—r

FIGURE 18.1

- FT i
Fuler's method,

EXAMPLE 18.1  Euler's Method

The

Problem Statement,  Use Euler’s method to integrate v - 4% - 0.5y froms - Ot 4
with a step size of 1. The initial conditionat ¢ - Ois v - 2. Note that the exact solution can
be determined analytically as

4
- ﬁ{fﬁ:'.l;r e 'IJFH}_ D 51

Solution. Equation (18.5) can be used to implement Euler’s method:

yly o w0y 00, 2300

where v(00) - 2 and the slope estimate at ¢ - 0 is

10,2 4" 052y 3

Therefore.

w(ly- 2o 31y 5
true sodution at - 1 1s

4

(Eﬂ_m“_ ¢ r:.ﬁu]}_ e B 6 10463
1.3

Thus. the percent relative error is

6.19463 - 5

— - 1 - 192
6.19463 00 9.28%

Er'

For the second step:

viZy - ow(l)y FOLS)ND
-5 [4MY 055 ] - 1140216
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TABLE 18.1 Comparison of frue and numerical values of the integral
of v« 4" . 0.5y, with the initial condition that y . 2
at¢- 0. The numerical values were computed using
Euler’s method with o step size of 1.

s Fuler (%)
o0 200000 200000
1 G 19463 500000 19,28
Z 1484392 1140214 2319
3 EXNTrAY 25513721 24.24
4 73,3389 5684931 24,54
Yi

Eﬂ R

40 — True solution

20 Euler solution

P2
0 1 2 3 4 1

FIGURE 18.2 . i _
Comparison of the e solution with a numerical solution using Euler's methad for the integral of
v 4" 0 Svhom e 0o 4 with a step size of 1.0, The inificl condiion atr - Oisy- 2.

The true solution at 1 - 2.0 is 1484392 and, therefore, the true percent relative error is
23.19%. The computation is repeated, and the resolts compiled in Table 18.1 and Fig. 18.2.
Note that although the computation captures the general trend of the true solution, the error
is considerable. As discussed in the next section, this error can be reduced by vsing a
smaller step size.

18.2.1 Error Analysis for Euler’s Method

The numerical solution of ODEs involves two types of error (recall Chap. 4):

1. Truncation, or discretization. errors caused by the nature of the techniques employed to

approximate values of y.
2. Round-off errors caused by the limited numbers of significant digits that can be retained

by a computer.
The truncation errors arc composed of two parts. The first is a local rruncation error

that results from an application of the method in question over a single step. The second is
a propagated truncation error that resulis from the approximations produced during the
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previous steps. The sum of the two is the total error. It is referred to as the global trunca-
Hon ervon

Insight into the magnitude and properties of the truncation error can be gained by de-
riving Euler’s method directly from the Taylor series expansion. To do this, realize that the
differential equation being integrated will be of the general form of Eq. (18.3), where
dv /e - v, and ¢ and v are the independent and the dependent variables, respectively. If
the solution—that is, the function describing the behavior of v—has continuous derivatives,
it can be represented by a Tayvlor series expansion about a starting value (1, ¥), as in
|recall Eq. (4.13)]:

(nh
: Y.
Vior Yio wh- %hz c e ';—‘Jr” - R, {18.6)

where i - £ - & and R, - the remainder term. defined as

J,in ”{E]

i 1)) w! (18.7)

Rn -
where £ lies somewhere in the interval from # to f; 1. An alternative form can be devel-
oped by substituting Eq. (18.3) into Egs. (18.6) and {18.7) to yield

S, _"’r'}hg ) ™ ”Uh ¥i)

2 nl S T (18.8)

Yioro ¥ flovioh-
where O(h" ') specifies that the local truncation error is proportional to the step size
raised to the (n - 1ith power,

By comparing Egs. (18.5) and (18.8), it can be seen that Euler’s method corresponds
to the Tavlor series up to and including the term f(s;, ¥)h. Additionally, the comparison
indicates that a truncation error occurs because we approximate the true solution using a fi-
nite number of terms from the Taylor series. We thus truncate, or leave out, a part of the true
solution. For example, the tuncation error in Euler’s method is atributable to the remain-
ing terms in the Taylor series expansion that were not included in Eq. (18.3). Subtracting
Eq. (18.5) from Eq. (18.8) yields

L ik .

E - ﬂ#hz- N T (18.9)
where £, - the true local truncation error. For sufficiently small A, the higher-order terms
in Eq. (18.9) are usually negligible, and the result is often represented as

.f.(fj- .Vr"}h)_

E, X

(18,11

or
E, - Oh%) (18.11)

where £, - the approximate local runcation error,

According to Eq. (18.11), we see that the local error is proportional to the square of
the step size and the first derivative of the differential equation. It can also be demon-
strated that the global truncation error is G(h)—that is, it is proportional to the step size



| Chapra: Appliad Numerical | 18, ODEs: Initial-Value Taxt 5 Tha MR-l
Methods with MATLAB for ~ Problems Campisnas, 2004

Engineers and Scientists

18.2 EULER'S METHCD 327

(Carnahan et al., 1969}, These observations lead to some vseful conclusions:

1. The global error can be reduced by decreasing the step size.

2. The method will provide error-free predictions if the underlying function (i.¢.. the solu-
tion of the differential equation) is linear, because for a straight line the second deriva-
tive would be zero,

This latter conclusion makes intuitive sense because Euler’s method uses straight-line seg-
ments o approximate the solution. Hence, Euler’s method is referred to as a first-order
method,

1t should also be noted that this general pattern holds for the higher-order one-step
methods described in the following pages. That is, an nth-order method will vield perfect
results if the underlying solution is an nth-order polynomial, Further, the local truncation
error will be O(h" 'y and the global error O (h").

18.2.2 MATLAB M-file Function: Eulode

We have already developed a simple M-file to implement Euler’s method for the falling
bungee jumper problem in Chap. 3. Recall from Section 3.6, that this function used Euler’s
method to compute the velocity after a given time of free fall. Now, let’s develop a more
general, all-purpose algorithim.

Figure 18.3 shows an M-file that uses Euler’s method to compute values of the depen-
dent variable v over a range of values of the independent variable . The name of the func-
tion holding the right-hand side of the differential equation is passed into the function as
the variable <vdc. The initial and final values of the desired range of the independent vari-
able is passed as a vector tspan. The initial value and the desired step size are passed as
vl and h, respectively.

The function first generates a vector + over the desired range of the dependent variable
using an increment of . In the event that the step size is not evenly divisible into the range,
the last value will fall short of the final value of the range. If this occurs, the final value is
added to © so that the series spans the complete range. The length of the © vector is deter-
mined as . In addition, a vector of the dependent variable v is preallocated with o values
of the initial condition to improve efficiency.

At this point. Euler’s method (Eg. 18.5) is implemented by a simple loop:

for 1 = Lin-1
Yvii+ll = wii)] + fevalldydo, od{id,vwiill*={oi{i+1)-o{ir};
=

Notice how the feval function 15 used o generate a value for the derivative at the appro-
priate values of the independent and dependent variables, Also notice how the time step is
avtomatically calculated based on the difference between adjacent values in the vector ¢,

The ODE being solved can be set up in several ways, First, the differential equation can
be defined as an inline function ohject. For example, for the ODE from Example 18.1:

== dydt = inline{'4¥expil.a*c) - O.5%y ', £, 'y

dydl =
Inline function:
dydo{t,v) = d*exp(d.8*%) - 0.5%y
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function [t.y] = Bulodeidydt, tspan.yi, k)

F b,y = Bulodeidydb,.tspan, ¥yl Ll

% uteed Buler's merhod Fo integrate an OBDE

% input:

3 clydl = name of the M-file that svaluates the ODE
% i sagi e et B O phnt LRy R SRR N P MRS S B R B R |
B final values of independent wariahle

B v = initial wvalue of dependent variable

% E = atep size

% output:

% £ = wector of independent wvariable

2 v = vector of sclubtion for dependent variable

ot
el
|

e Espan bl

tepani{2};

BiEEma el Baalo e

o= lengEhie):

% if necessary, add an additional walue of £
% 2o rthat range goes from £ = £1 to ©f

-
Fh
El

if ten)=kf

einsl) = ££;

T
end
¥ = yl*ones(n,l); %preallocate ¥ Lo improve efficiency
for i = I:n=-31 S$imnlement BEuler's method

wii+l) = wii) + feval (dydt ti{i},. vl =i+l -E({i1};
end

FIGURE 18.3
An Mifite to implement Euler's melhod.

The solution can then be generated as

== [t,y] = Bulode(dydt, [0 471,2,1);
== dispilt,yl]

with the result (compare with Table 18.1):

0 2.0000
1.00060 5.0000
2.0000 11.4022
3.0000 29,5132
4.0000 56.8433

Alternatively. a separate M-file can be developed o hold the ODE:

function dydt = diffegit.v}
dydt = dvexp((.8%t) - 0.5%y;



| Chapra: Appliad Numerical | 18, ODEs: Initial-Value Taxt 5 Tha MR-l
Methods with MATLAB for ~ Problems Campisnas, 2004

Engineers and Scientists

18.3 IMPROVEMENTS OF EULER'S METHOD 329

18.3

The solution can then be generated by passing the name of the M-file to Buler as a string:

== [b,v] = Bulodei{'diffeg', [0 41,2,1);
== dispi{lt,v])

or as a function handle:

== [t,¥] = Eulocdsi{ddiffeq, [0 47,2, 1)
== dispilo,vl)

Although these two options are equally valid for the present case, there will be more
complex problems where the definition of the ODE requires several lines of code. In such
instances, creating a separate M-file is the only option.

IMPROVEMENTS OF EULER'S METHOD

A fundamental source of error in Euler’s method is that the derivative at the beginning of
the interval is assumed (o apply across the entire interval. Two simple modifications are
available to help circumvent this shortcoming. As will be demonstrated in Section 18.4,
both modifications (as well as Euler’s method itself) actually belong o a larger class of so-
lution techniques called Runge-Kutia methods. However, because they have very straight-
forward graphical interpretations, we will present them prior 1o their formal derivation as
Runge-Kuita methods,

18.3.1 Heun’s Method

One method to improve the estimate of the slope involves the determination of two deriv-
atives for the interval—one at the beginning and another at the end. The two derivatives are
then averaged to obtain an improved estimate of the slope for the entire interval, This ap-
proach, called Heun's method, is depicted graphically in Fig, 18.4.

FIGURE 18.4
Craphical depiction of Heun's method. |+ ) Predictor and | | conecior,
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Recall that in Euler’s method, the slope at the beginning of an interval

Yoo S (18.12)
is used o extrapolate linearly 1o v :

W e Soh (18.13)

For the standard Euler method we would stop at this point, However, in Heun's method the

.\-}-[_' 1 calculated in Eq. (18,13) is not the final answer, but an intermediaie prediction. This

is why we have distinguished it with a superseript 0. Equation {18.13) 1s called a predicior
equation, It provides an estimate that allows the calculation of a slope at the end of the
interval;

Yoo Flewn ) (18.14)
Thus, the two slopes [Eqgs, (18.12) and (18.14)] can be combined (0 obiain an average slope
for the interval:

Flevir fle 1wy
2

(18.15)

This average slope is then used to extrapolate linearly from v 1o vy using Euler's
method:

Sy flonx? )

2

¥ioro Vo h (18.16)

which is called a corrector equation,
The Heun method is o predictor-corrector approach. As just derived, it can be ex-
pressed concisely as

Predictor (Fig. 18.4ay: v - " f.v)h (18.17)

i fl3l) 42"'(:,._ ) L])

Corrector (Fig. 18.4h): 1f 1 h (18.18)

(forj=1,2..... )

Note that because Eq. (18.18) has v, | on both sides of the equal sign. it can be applied in
an iterative fashion as indicated. That is, an old estimate can be vsed repeatedly to provide
an improved estimate of v, . The process is depicted in Fig. 18.5.

FIGURE 18.5 | |
Graphical represeniation of iterating the corecior of Heun's method 1o oblain an impraved
astimote.

: o Fle T+ ey vt
}“J, F:'I'f ¥ 2[ J)}.I
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As with similar iterative methods discussed in previous sections of the book, a termi-
nation criterion for convergence of the corrector is provided by
i il
Yo %
e || 100% (18.19)
Y
where v/ ]‘ and y; | are the result from the prior and the present iteration of the corrector,
respectively, It should be understood that the iterative process does not necessarily con-
verge on the true answer but will converge on an estimate with a finite truncation error, 4s
demonstrated in the following example,
EXAMPLE 18.2 Heun's Method

Problem Statement.  Use Heun’s method with iteration to integrate v - 4¢"% . 0.5y
from¢ - 0tod with astep size of 1. The initial conditionatr - Ois vy - 2. Employ a stop-
ping criterion of 0.00001% to terminate the corrector iterations,

Solution.  First, the slope at (fy, vo) is calculated as
vy 4’ 05¢2) 3

Then, the predictor 15 used to compute a value at 1.0:
Vo203 s

Note that this is the result that would be obtained by the standard Euler method. The true
value in Table 18.2 shows that it corresponds to a percent relative error of 19.28%.

Now, to improve the estimate for ¥, |, we use the value v{ to predict the slope at the
end of the interval

vy floyl) - 4™ 0505y 6.402164

which can be combined with the initial slope to yield an average slope over the interval
fromi - OQuwl:

R ’J
v w. 4701082

This result can then be substituted into the corrector [Eq. (18.18)] w0 give the prediction at
r- 1

V-2 4701082(1) - 6.701082
which represents a true percent relative error of - 8.18%. Thus, the Heun method without

iteration of the corrector reduces the absolute value of the error by a factor of about 2.4 as
compared with Euler’s method. At this point, we can also compute an approximate error as

6. 701082 5

Ea l 6701082 ' 100%: 5.30%

Now the estimate of ¥ can be refined by substituting the new result back into the
right-hand side of Eq. (18.18) 1o give
3. 4" 0.5(6.701082)

3 6.275811

o2
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which represents a true percent relative error of 1,31 percent and an approximate error of

6275811 6701082
By 6275811 - 100% - 6.776%

The next iteration gives

s, 3 40800 ﬁ.s(ﬁ.z?ﬁsll}]

¥ 2 5 6382129

which represents a true error of 3.03% and an approximate error of 1.666%.

The approximate ercor will keep dropping as the iterative process converges on a sta-
ble final result. In this example, after 12 iterations the approximate error falls below the
stopping criterion. At this point, the resultatr - 1 is 6.36087, which represents a true rel-
ative error of 2.68% . Table 18.2 shows results for the remainder of the computation along
with results for Euler’s method and for the Heun method without iteration of the corrector,

TABLE 18.2 Comparison of frue and numerical values of the integral of +' - 46 0.5y,
with the initial condition that v - 2 at+ - 0. The numerical values were
computed using the Euler and Heun methods with o step size of 1. The Heun
method was impfamenfed both without and with iteration of the correctar.

without eration With lteration
" irue " Ender e [%1 " leun L {%:l " Meun L [%}
200000 200000 200000 200000
H19467 5.00000 19.28 670108 8.18 & 36087 268
14 843G7 1140216 2319 1631978 594 15300224 309

33657 2551321 2434 35190925 1046 34.74328 17
£5.538%0 56,8453 24.54 8335777 10,42 FEFEAN0 318

P LD R — O

Insight into the local error of the Heun method can be gained by recognizing that it is
related to the trapezoidal rule. In the previous example, the derivative is a function of both
the dependent variable v and the independent variable r. For cases such as polynomials,
where the ODE is solely a function of the independent variable, the predictor step
[Eq. (18.17)] s not required and the corrector is applied only once for each iteration. For
such cases, the technique is expressed concisely as

fi) - fit )

——h
2

Naotice the similarity between the second term on the right-hand side of Eq. (18.20) and the

rapezoidal rule [Eq. (16.11)]. The connection between the two methods can be formally
demonstrated by starting with the ordinary differential equation

Vil ¥ (18.20)

f.
% Fin (18.21)
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This equation can be solved for y by integration:

RIA L.
f dvy f fode {18.22)
A I

which yields

fi g
Moyt Mo f flydi (18,23)
i
or
|
Vi N f Firydi (18.24)
i
Now, recall that the trapezoidal rule [Eq. (16.11)] is defined as
e ) fln
f fleydr - Wﬁ (18.25)
P

where h - 5 1 &, Substituting Eq. {(18.25) into Eq. (18.24) yields

filey- fin J]h

18.26
3 { }

Yo N
which is equivalent to Eq. (18.20). For this reason, Heun's method is sometimes referred to
as the trapezoidal rule.

Because Eq. (18.26) is a direct expression of the trapezoidal rule, the local truncation
error is given by [recall Eq. (16.14)]

1} :

E - - Thf‘ (18.27)
where £ is between #; and £; 1. Thus, the method is second order because the second deriv-
ative of the ODE is zero when the true solution is a guadratic. In addition, the local and
global errors are O(h') and O(h*). respectively. Therefore, decreasing the step size
decreases the error at a faster rate than for Euler’s method.

18.3.2 The Midpoint Method

Figare 18.6 illustrates another simple modification of Euler’s method. Called the midpoint
method, this technigue uses Euler’s method to predict a value of v at the midpoint of the
interval (Fig. 18.6a):

fi
Vi /2 ¥ .,r{f;'._'l-'j'}i (18,28}
Then. this predicted value is used to calculate a slope at the midpoint;
Vi o 1) (18.20)

which is assumed to represent a valid approximation of the average slope for the entire
interval. This slope is then vsed to extrapolate linearly from & o #. | (Fig. 18.6h):

Voo ¥ Sl ydh {18,300
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:\'J }' [ 5

Slope = flfi- i ¥i- 1)

Slope = fit;, ;¥ )

Bl Y

—
wa
-
—
ot
-
-

{al bl

FIGURE 18.6
Graphical depiction of Heun's method. |- | Predictor and |-} correctar.

Observe that because v; | is not on both sides, the corrector [Eq. {18.30)] cannot be applied
iteratively to improve the solution as was done with Heun’s method.

As in our discussion of Heun's method, the midpoint method can also be linked 1o
Newton-Cotes integration formulas. Recall from Table 16.4 that the simplest Newton-Cotes
open integration formula, which is called the midpoint method, can be represented as

b
[f(.r:-dr (b adfivg) (18.31)

where x| is the midpoint of the interval (@, #). Using the nomenclature for the present case,
it can be expressed as

fi
[ Fieyede = i 100 (18.32)
5

Substitution of this formula into Eq. (18.24) vields Eq. (18.30). Thus, just as the Heun
method can be called the trapezoidal rule, the midpoint method gets its name from the
underlying integration formula on which it is based.

The midpoint method is superior to Euler’s method because it utilizes a slope esti-
mate at the midpoint of the prediction interval. Recall from our discussion of numerical
differentiation in Section 4.3.3 that centered finite divided differences are betier approxi-
mations of derivatives than either forward or backward versions, In the same sense, a
centered approximation such as Fq. (18.29) has a local truncation error of O(h*) in com-
parison with the forward approximation of Euler’s method, which has an error of O(h).
Consequently, the local and global errors of the midpoint method are Oy and Oh?),
respectively.
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18.4 RUNGE-KUTTA METHODS

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without
requiring the calculation of higher derivatives. Many varations exist but all can be cast in
the generalized form of Eq. (18.4):

Viopo ¥l {18.33)

where ¢ is called an increment function, which can be interpreted as a representative slope
over the interval, The increment function can be writlen in general form as

@ agky o azkz o o anky (1834
where the o's are constants and the k's are

k- S, ) (18344}

ka- flt- pihoye- gkl (18.34hk)

ky - Sl opehuove o guikihe gaakah) (18,3400

Iicl'l ’ .FI‘:IJ' L |h1 i A a.rklh' iy I.E'd('z'i'l Coo i L Ik;.l [J’I} 182340

where the p's and ¢'s are constants, Notice that the £'s are recurrence relationships, That is,
ky appears in the equation for k2, which appears in the equation for k3. and so forth, Be-
cause each ks a functional evaluation, this recurrence makes RK methods efficient for
computer calculations,

Various types of Runge-Kutta methods can be devised by employing different num-
bers of terms in the increment function as specified by n. Note that the first-order RK
method withz - 115, in fact. Euler's method. Once nis chosen, values for the a's, p's, and
g's are evaluated by seting Eg. (18.33) equal to terms in a Taylor series expansion. Thus,
at feast for the lower-order versions, the number of terms n usvally represents the order of
the approach. For example, in Section 18.4.1, second-order RK methods vse an increment
function with two terms {(n - 2). These second-order methods will be exact if the solution
to the differential equation is quadratic. In addition, because terms with h° and higher are
dropped during the derivation, the local truncation error is Q%) and the global error is
O(h*). In Section 18.4.2, the fourth-order RK method (n - 4) is presented for which the
global truncation error is O (A*),

18.4.1 Second-Order Runge-Kutta Methods

The second-order version of Eq. (18.33) is

Vit v (ke agka)h {18.35)
where

Ky Sl v (18.35q)

by fl pohoyi - gukih) (18.35h)

The values for ay, a2, py. and gy are evaluated by seiting Eq. (18.35) equal 10 a
second-order Tavlor series, By doing this, three eguations can be derived 1o evaluate the
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four unknown constants {see Chapra and Canale, 2002, for details), The three equations are

dyp - odr | {18.360
apy - 172 (18.37)
daagry - 172 (18.38)

Because we have three equations with four unknowns, these equations are said o be
underdetermined. We, therefore, must assume a value of one of the unknowns 1o determine
the other three, Suppose that we specify a value for az. Then Eqs. (18.36) through (18.38)
can be solved simultaneously for

a1 o (18.39)
1
: o (18.400
PL-ogu 0
Because we can choose an infinite number of values for a». there are an infinite num-
ber of second-order RK methods. Every version would yield exactly the same results if the
sofution to the ODE were quadratic, linear. or a constant. However, they vield different re-

sults when (as is typically the case) the solution is more complicated. Three of the most
commonly used and preferred versions are presented next.

Heun Method without lteration [, - 1/2).  If ay is assumed to be 172, Egs. (18.39)

and (18,40} can be solved foray - 1/2and py - gy - 1. These parameters, when substi-
tuted into Eqg. (18.35), yield
i |
¥i1o Vi (Eki' Ekz) h {18.41)
where
ky - il w) (18.41a)
ka- ftti- howi kih) (18.41h)

Mote that &, is the slope at the beginning of the interval and &7 is the slope at the end of the
interval. Consequently, this second-order Runge-Kutta method is actually Heun's tech-
nigque without iteration of the corrector.

The Midpoint Methad [, - 1), Ifa; isassumed tobe 1 thenay - O, py - gy - 1/2,
and Eq. (18.35) becomes

Yeoro v kah (18.42)
where

ky o ft ) (18.42a)

koo fl- R/ y - kih/2) (18.42h)

This is the midpoint method.

Ralston's Method (o, - 2/3).  Ralston (1962) and Ralston and Rabinowitz (1978) de-
termined that choosing a» - 2/3 provides a minimuem bound on the truncation error for
the second-order RK algorithms, For this version, ay - 1/3 and py - g - 3/4, and
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Eq. (18.35) becomes
| 2

Vi1 Wi (Ekl - Ek’_r)h {18.43)
where

ky o Flxw) (18.43a)

_ 3 3

ka-  f (I:' : Eh, ¥i - Ek]h) (18.43h)

18.4.2 Classical Fourth-Order Runge-Kutta Method

The most popular RK methods are fourth order, As with the second-order approaches, there
are an infinite number of versions, The following is the most commonly used form, and we

therefore call it the classical fourth-order RE method:
|
Vi1l ¥ E{k; o 2ka - ks kgdh (18.44)
where
k- i) {18.44a)
1 1
ko fUn- Zhow - Zkih NEESI]
2 2
i 1 1
ky- 6 5&., Vi Ek}h (18.44¢c)
ki flti by kah) (18.44d)
Notice that for ODEs that are a function of ¢ alone, the classical tourth-order RK
method is similar to Simpson’s 1/3 rule. In addition, the fourth-order RK method is similar
to the Heun approach in that multiple estimates of the slope are developed to come up with
an improved average slope for the interval. As depicted in Fig. 18.7, each of the &'s repre-
sents a slope. Equation (18.44) then represents a weighted average of these to arrive at the
improved slope.
EXAMPLE 18.3 Clossical Fourth-Order RK Method

Problem Statement. Employ the classical fourth-order RK method to integrate
v 46" 35y from - (o | using a step size of 1 with v(0} - 2.

Solution.  For this case, the slope at the beginning of the interval is computed as
ky - f0,2) 4™ 052y 3

This value is used to compute a value of v and a slope at the midpoint;
vi0s) - 2- 305y 335
ky o f(0.5,3.5) - 4¢"M0% . 05(3.5) 0 4.217299
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5 Tha Mchraw—Hilt

Campaenas, 2004
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Craphical depiction of the slope estimates comprising the fourth-arder BX mathod,

v(0.5) - 20 4.217299(0.5)  4.108649
F(0.5.4.108649) - 4”40 0,5(4.108649) - 3.912974

ks

1.0y 20 3.912974(1.0) - 5912974
FLO,5912974) - 4" (0.5(5.912974) - 5.945677

ky -

,d} .

v(1.0)- 2.

1
AN

204217299 - 2(3.912974) - 5.9456077] - 4.201037

4.201037(1.00 - 6.201037

which compares favorably with the true solution of 6. 194631 (s, -

(L1035

This slope in turn is used to compute another value of v and another slope at the midpoint:

Next, this slope is used to compute a value of v and a slope at the end of the interval:

Finally, the four slope estimates are combined to yield an average slope. This average slope
is then used to make the final prediction at the end of the interval.

It is certainly possible o develop fifth- and higher-order RK methods, For example,
Butchers (1964) fifth-order RK method is written as

.

Yi

glﬂ[?kl' 32k - 12y 325 Tkl

(18.45)
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where
by Sl v {15.4354)
1 1
ks - f(rr-- ;’L.‘*‘e' Eku’a) (18.45h)
k-fr-i.‘*-lk!-lkﬂ 18.45¢
3.a4!1.‘h8|132 (1845¢c)
1 1
by it =hove kil kah (18.45d)
2 2
ks - I-E.f*-ikh- Eka’z 18.45
so Sin e gh T (18.45¢)
3 2 12 12 b
ky - ool =k Zkah o =kl — ksl ks 45
5 f(r, 1,y ?klt ?k,a ?Lgr ?iu ?k_h) (18.450)

18.5

Note the similarity between Butcher’s method and Boole’s rule in Table 16.2. As expected,
this method has a global truncation error of G(h-"}l.

Although the fifth-order version provides more accuracy, notice that six function eval-
vations are required. Recall that up through the fourth-order versions, n function evalua-
tions are required for an sth-order RK method. Interestingly, for orders higher than four,
one or two additional function evaluations are necessary. Because the function evaluations
account for the most computation time, methods of order five and higher are usually con-
sidered relatively less etficient than the fourth-order versions. This is one of the main rea-
sons for the popularity of the fourth-order RK method.

SYSTEMS OF EQUATIONS

Many practical problems in engineering and science require the solution of a system of si-
multancous ordinary differential equations rather than a single equation. Such systems may
be represented generally as

dyr Filf, vi ¥ Vol

et W Ml Ve vovu ¥

dys )

— falto v v W)

= (18,46}
iy,

u}ll S P I - TP Ve b

The solution of such a sysiem requires that » initial conditions be known at the starting
value of 1,

An example is the caleulation of the bungee jumper’s velocity and position that we set
up at the beginning of this chapter. For the free-fall portion of the jump, this problem
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EXAMPLE 18.4

amounis to solving the following system of ODEs:

de (1847
dr =0
dv Cf o

v . G (18,48
a1 8 m )

IT the stationary platform from which the jumper launches is defined as x - 0. the initial
conditions would be x(0) - v(h - 0.

18.5.1 Euler’s Method

All the methods discussed in this chapter for single equations can be extended to systems
of ODEs. Engineering applications can involve thousands of simultaneous equations. In
each case. the procedure for solving a system of equations simply involves applying the
one-step technique for every equation at each step before proceeding to the next step. This
is best illustrated by the following example for Enler’s method,

Solving Systems of ODEs with Euler's Method

Problem Statement.  Solve for the velocity and position of the free-falling bungee jumper

using Fuler’s method. Assuming thatatr - 0,x - v 0, andintegrate tor - 10s witha

step size of 2 5. As was done previously in Examples 1.1 and 1.2, the gravitational accelera-

tion is 9.81 m/s’, and the jumper has a mass of 68. 1 kg with a drag coefficient of 0.25 kg/m.
Recall that the analytical solution for velocity is [Eq. (1.9)]:

m (N

vir) - .n'g—lanh( ﬁf)
Ve Vom

This result can be substitwted into Eg. (18.47) which can be integrated to determing an

analytical solution for distance as

alt) - m In[cmh(vﬁﬁr)]
[} m

Use these analytical solutions to compuite the true relative errors of the resulis.

Solution.  The ODEs can be used to compute the slopes at ¢ - 0 as

dx
e ]
dv 025
— - 981 —(h - 9.8
ot 63.1( :
Euler’s method is then used to compute the values atr - 2 s,
x- 0- 02y 0

ve 0 9.812) - 19.62

The analyiical solutions can be computed as x(2) - 19.16629 and v(2) - 18.72919. Thus,
the percent relative errors are 100% and 4,756%, respectively,
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The process can be repeated 1o compute the results atr - 4 as

roo0- 1962(2) 3924
0.25

v 1962 (‘J,Hl : m(ig,f}?,)z)i © 3641368

Proceeding in a like manner gives the results displayed in Table 183,

TABLE 18.3 Distance and velocity of a freefalling bungee jumper as computed
numerically with Euler’s method.

Lride (ET Haler Eitler 8 J’ )

O o 0 o

15 1463 187292 v PR G200 PO000% A58
A15304 3307118 39 2400 364137 45 45% Rt
& 1475462 A2078% P12.0874 A6, 2983 24.25% 10.03%
& 2355104 469555 20 5EA0 2001802 [3.83% & HER
i 3341782 A% 4214 J05.0244 51,3123 B.AE% J.83%

= S

EXAMPLE 18.5

Although the foregoing example illustrates how Euler’s method can be implemented
for systems of ODEs, the results are not very accurate because of the large step size. In ad-
dition, the resulis for distance are a bit unsatisfying because x does not change until the
second iteration. Using a much smaller step greatly mitigates these deficiencies. As de-
scribed next, using a higher-order solver provides decent resulis even with a relatively
large step size.

18.5.2 Runge-Kutta Methods

Note that any of the higher-order RK methods in this chapter can be applied to systems of
equations, However, care must be taken in determining the slopes. Figure 18,7 is helpful in
visualizing the proper way to do this for the fourth-order method, That 1s, we first develop
slopes for all variables at the initial value, These slopes (a set of &, 's) are then vsed 1o make
predictions of the dependent variable at the midpoint of the interval, These midpoint val-
ves are in twrn used 1o compute a set of slopes at the midpoint (the k2 's). These new slopes
are then taken back to the starting point to make another set of midpoint predictions that
lead to new slope predictions at the midpoint (the k5's), These are then employved to make
predictions at the end of the interval that are used 1o develop slopes at the end of the inter-
val (the ky's). Finally, the &'s are combined into a set of increment functions [as in
Eq. (18,44 that are broughi back to the beginning to make the final predictions, The fol-
lowing example illustrates the approach.

Solving Systems of ODEs with the Fourth-Order RK Method

Problem Statement.  Use the fourth-order RK method to solve for the same problem we
addressed in Example 18.4,
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Solution.  First. it is convenient to express the ODEs in the functional format of

Eq. (18.46) as
% Cofl vy ow
r.’,f!,' Ly 2
ar falt.x v) - g EL

The first step in obtaining the solution is to solve for all the slopes at the beginning of the
interval:

kpgo A0.0.0)- 0

0.25
yo A0.0,00 981 ——(0)* - 98l
kia- f00,0,0) 8 68‘1{0'] 9.8

where &;_; is the ith value of & for the jth dependent variable. Next, we must calculate the
first values of x and v at the midpoint of the first step:

i 0 k i 0 l]'?- N
xily - x(0)- E.IE' ' E

h 2
v{l) - wil)- k._;E- 0 ‘}‘.HIE- 9.51

which can be vsed 1o compute the First set of midpoint slopes:

kai - f1(1,0,9.80) - 9.8100
krao fo(1,0.9.81) - 9.4567

These are vsed (o determine the second set of midpoint predictions;

alhy - x(0)- ku;- 0 9.31(]()%- 98100

vily e vy kmg- 1N 9.45&?%- 0.4567

which can be used 1o compute the second set of midpoint slopes:

kaiy o f1(1.9.8100,9.4567) - 9.4567
kiao f(1.9.8100,9.4567) - 9.4817

These are used to determine the predictions at the end of the interval:

X2y w0y - ks gh- 02 9.4567(2) - 189134
vi2) o () ksl 0 94B1T7(2) - IB.9G34

which can be used to compute the endpoint slopes:

kyi - f1(2.18.9134,18.9634) - 18,9634
kya o f2(2.18.9134, 18.9634) - 8.4898
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The values of k can then be used to compure [Fa. (18.440]:
1
x(2y- 0 5 [0 (98100 9.4567)- 18963412 19,1656
I
v(2y - 0 3 [9.8100- 2(9.4567- 94817)- B4898]2- 187256
Proceeding in a like manner for the remaining steps vields the values displayed in
Table 18.4. In contrast to the resulis obtained with Euler’s method. the fourth-order RK
prediciions are much closer to the true values, Further, a highly accuraie, nonzero value is
computed for distance on the first step.
TABLE 18.4 Distance and velocity of a freefalling bungee jumper as computed numeri-
cally with the fourth-order RK method.
" trme " e | RK4 " RRA S )
o o 0 0 o
2 19 Tadd 18,7292 191856 18,7256 Q.004% 0.0719%
4 A1HE04 330118 J1R30 330995 GO0TR 0037%
v b/ S8 A2 0762 1472521 42,0547 Q004% 0051%
B LA 5104 449555 2355104 A6.9345 [REEE R
Y] 3341782 494214 3341626 A AT2F 0.005% O028%
PROBLEMS

18.1 Solve the following initial value problem over the
imterval from ¢ - 0 to 2 where v(0) - L. Display all your
results on the same graph.

dy 3
pr ¥ 'y

(a) Analytcally.
(b} Using Evler’s method with i - 0.5 and 0.25.
(¢} Using the midpoint method with /- (0.5,
(d} Using the fourth-order RK method with & - 0.3,
18,2 Solve the following problem over the interval from
x - Oro 1 using a step size of 0.25 where v(0) - 1. Display
all your results on the same graph.
dy
dx
(a) Analytically.
(b} Using Enfer’s method.
() Using Hewn's method withour the corrector,
(d} Using Ralston’s method.
(e} Using the fourth-order RK method.
8.3 Solve the tollowing problem over the interval from
x o Do 2 using a step size of 0.5 where v(0) - 1. Display

(1 2 ¥

all your results on the same graph.
dy
v
Obtain your solutions with (a) Heoun’s method without
iterating the corrector, (b) Heun's method with iterating the
corrector until &, < (L1%, (¢} the midpoint method, and
(d} Ralston’s methad,
18.4 The growth of populations of organisms has many en-
gineering and scientific applications. One of the simplest
maodels assumes that the rate of change of the population p is
proportional to the existing population at any time r:

dp
on kyp (P18.4.1)
where &, - the growth rate. The world population in mil-

tions from 1950 through 2000 was

1250 @55 1900 |30 1970 1375
2555 27800 3040 dade 308 A0ES
1980 198s 1990 1555 2000
4454 ABS0 FIFE A&BG6 G079
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{a) Assuming that Eq. (P18.4.1) holds. use the data from
1950 through 1970 10 estimate &,

{h) Use the fourth-order RK method along with the results
of (a) 1o stimulate the world population from 1950 1o
2050 with a step size of 5 years, Display your simulation
results along with the data on a plot.

18.5 Although the madel in Prob, 18.4 works adeguarely

when population growth is unlimited. it breaks down when

factors such as food shortages. pollution. and lack of space
inhibit growth. In such cases, the growth rate is not a con-
stant, but can be formulated as

k,u' kgm(i' P)’Pmux)

where kyn - the maximum growth rate under unlimited
conditions, p - population., and  pg. - the maximuom
population. Note that p,, is sometimes called the carrving
capecity,. Thus, at low population density p o pa.
ky - kum. As p approaches pygu.. the growth rate ap-
proaches zero. Using this growth rate formulation, the rate
of change of population can be modeled as

dp
it

This is referred to as the lagistic model. The analytical solu-
tion to this model is

Kgdl - P Paacd P

plll:u
o (P pode te!

Simulate the world's population from 1950 1o 2050 using
{a} the analytical solution, and (b} the fourth-order RK
method with a step size of 5 years. Employ the following
initial conditions and parameter values for your simulation:
po (in 19507 - 2,555 million people, &y, - 0.026/yr. and
P 12,000 million people. Display your results as a plot
along with the data from Prob, 18.4.

18.6 The free-fall velocity of a parachutist can be simulated

B o

as
du i s
[ . _L!“'
dr & "

where v - velocity (mfs), 7 - time (s}, g - acceleration due

to gravity (9.81 m/s™), oy - drag coefficient (kg/m), and
m - mass (kgl, For a 80-kg parachutist, solve this equation
nuimerically from ¢ - 010 30 5 given that v(0y - O, During
free fall, ¢y - .25 kg/m. However, at - 10 5, the chute
opens, whereupon o - 3 ke/m,

18.7 Solve the following pair of ODEs over the interval
from ¢ - 0 to 0.4 using a step size of 0.1, The inital condi-
tions are vill) - 2 and 2(0) - 4. Obtain your solution with
{a} Bulers method and (b the fourth-order RK method. Dis-
play yvour results as a plot,

dv

—_— . 2 5:{.- f
dt )

de oy’

dr 2

18.8 The van der Pol equation is a model of an elecironic
circuir that arose hack in the days of vacuwm tubes:

d’y dy
— (1 yh= v 0
dr? e

Given the initial conditions, vy - v {0y - 1, solve this
equation from ¢ - 0 to 10 wsing Euler's method with a step
size of (a) 0.2 and (h) 0.1, Plot both solutions on the same
graph.

18.9 Given the initial conditions, »(0) - 1 and v {(h - @,
solve the following initial-value problem from ¢ - 010 d:

d*v

dr?

Obtain your solutiens with (a) Buler’s method and (b) the
fourth-order RK method. In both cases, use a step size of (L1,
Plot both solutions on the same graph along with the exact
solution v - cos 3r,

1810 Develop an M-file to solve a single ODE with Heun's
method with iteration, Design the M-file so that it creates a
plot of the results. Test your program by using it 1 solve for
population as described in Prob, 18.5. Employ a step size of
5 wears and iterate the corrector untl g, < 0.1%.

18,11 Developan M-file to solve a single ODE with the mid-
poiint method. Design the M-file so that it creates a ploLof the
results, Test your program by using it 1o solve for population
as described in Prob, 18,5, Employ a step size of 3 years.
18.12 Develop an M-file to solve a single ODE with the
Tourth-order RK method. Design the M-file so that it creates
a plot of the results, Test your program by using it to sofve
Prob. 18.2. Employ a step size of 0.1,

15.13 Develop an M-file to solve a pair of ODEs with the
fourth-order RK method. Design the M-file so that it creates
a plot of the results. Test your program by using it to solve
Prob. 18.7 with a step size of 0L25.

SOy 0
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CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce vou to more advanced methods
for solving initial-value problems for ordinary differential equations. Specific
objectives and topics covered are

*  Understanding how the Runge-Kutta Fehlberg methods use RK methods of
different orders to provide error estimates that are used to adjust the step size.
Familiarizing vourself with the buili-in MATLAB functions for solving ODEs.
Learning how to adjust the options for MATLAB s ODE solvers.
Learning how to pass parameters via MATLAB s ODE solvers,
Understanding the difference between one-step and multistep methods
for solving ODEs.
®*  Understanding what is meant by stiffness and its implications for

solving ODEs,

19.1

ADAPTIVE RUNGE-KUTTA METHODS

To this point, we have presented methods for solving ODEs that employ a constant step
size. For a significant number of problems, this can represent a serious limitation. For
example, suppose that we are integrating an ODE with a solution of the type depicted in
Fig. 19.1. For most of the range, the solution changes gradually. Such behavior suggests
that a Faarly large step size could be employed 1o obtain adequate results, However, foralo-
calized region from ¢ - 1.75 10 2.25, the solution undergoes an abrupt change. The practi-
cal consequence of dealing with such functions is that a very small step size would be
required o accurately capture the impulsive behavior, If a constant step-size algorithm
were employed, the smaller step size required for the region of abrupt change would have

345
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1] 1 2 3 i

FIGURE 19.1
An example of a salution of an QDE that exhibits an abrupt change, Automatic steprsize
U:_‘i]ustrner!r heas grear udvurﬁuges tor such coses,

0 be applied to the entire computation, As a consequence, a much smaller siep size than
necessary—and, therefore, many more calculations—would be wasted on the regions of
gradual change.

Algorithms that avtomatically adjust the step size can avold such overkill and hence be
of great advantage, Because they “adapt” to the solution’s trajectory, they are said to have
adaptive siep-size confrol, Implementation of such approaches requires that an estimate of
the local truncation error be obtained at each step. This error estimate can then serve as a
basis for either shortening or lengthening the step size,

Before proceeding, we should mention that aside from solving ODEs, the methods
described in this chapter can also be used o evaluate definite integrals, The evaluation of
the definite integral

1]
l- flxrdx
i

is equivalent to solving the differential equation

v .

—_. .T:I

dx A
for v{b} given the initial condition v(a) - 0. Thus, the following techniques can be em-
ployed to efficiently evaluate definite integrals involving functions that are generally
smooth but exhibit regions of abrupt change,
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There are two primary approaches (o incorporate adapiive step-size control into one-
step methods, Srep halving involves laking each step twice, once as a full step and then as
two half steps, The difference in the two resulis represents an estimaie of the local tirunca-
tion error, The step size can then be adjusted based on this error estimate,

In the second approach, called embedded RK methods, the local truncation error is es-
timated as the difference between two predictions using different-order RK methods, These
are currently the methods of choice because they are more efficient than step halving.

The embedded methods were first developed by Fehiberg. Hence, they are sometimes
referred (o as RK-Feldberg merhods, At face value, the idea of using two predictions of dif-
ferent order might seem oo computationally expensive. For example, a fourth- and fifth-
order prediction amounts 1o a total of 10 function evaluations per step frecall Egs. (18.44)
and (18.45)]. Fehlberg cleverly circumvented this problem by deriving a fifth-order RK
method that employvs most of the same function evaluations required for an accompanying
fourth-order RK method. Thus, the approach yielded the error estimate on the basis of only
six function evaluations!

19.1.1 MATLAB Functions for Nonstiff Systems

Since Fehlberg originally developed his approach, other even better approaches have been
developed. Several of these are available as built-in functions in MATLAB.

----- . The ode2d function uses the BS23 algorithm (Bogacki and Shampine, 1989;
Shampine, 1994), which simultaneously uses second- and third-order RK formulas to solve
the ODE and make error estimates for step-size adjustment. The formulas to advance the
solution are

1
Yoo Mo §{2k|- 3kz - dkadh (1913
where
ky - filfi. ) {19.1a)
i 1 1
LI Eh.y,.- Eklh (19,15}
. 3 3
by flGe Eh._‘n—- Eszs (19.1¢)
The error is estimated as
|
Ei 1 ?,—,:,{' Sky - Bkac Bkyo 9kgh (19.3)
where
by ity 1) 119.24)

Noite that although there appear to be four function evaluations, there are really only three
because after the first step, the &y for the present step will be the ks from the previous siep.
Thus, the approach yields a prediction and error estimate based on three evaluations rather
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EXAMPLE 19.1

than the five that would ordinarily result from using second- (two evaluations) and third-
order (three evaluations) RK formulas in tandem,

Afier each step, the error 18 checked w determine whether it is within a desired toler-
ance, I it is, the value of v, 1 is accepied, and k4 becomes &y Tor the next step. If the error
is too large, the step is repeated with reduced step sizes until the estimated error satisfics

E - max(RelTol- -, AbsTol) {19.3)

where RelTol is the relative tolerance (default - 107%) and AbsTol is the absolute tolerance
{default - 10°). Observe that the criteria for the relative error uses a fraction rather than a
percent relative error as we have done on many occasions prior to this point.

<. The odeds function uses an algorithm developed by Dormand and Prince (19907,
which simulianeously uses fourth- and fifth-order RK formulas o solve the ODE and make
error estimaies for siep-size adjustment, MATLAB recommends that ode45 is the best
function to apply as a “first try” for most problems.
------ . The od=113 function uses a variable-order Adams-Bashforth-Moulton solver, It
is useful for stringent error tolerances or computationally intensive ODE functions. Note
that this iz a multistep method as we will describe subsequently in Section 19.2,

These functions can be called in 2 number of diffterent ways. The simplest approach is

[t, ¥] = odeiS{odefun, tspan, ¥l

where v is the solution array where each column is one of the dependent variables and each
row corresponds (o a time in the column vector ¢, odefun is the name of the function
returning a column vector of the right-hand-sides of the differential equations, £ soan spec-
ifies the mtegration interval, and 0 - a vector containing the imitial values,

Note that £ zpan can be formulated in two ways, First, if it is entered as a vector of two
numbers,

tspan = [Li tfi;
the integration is performed from «i to « £ Second. to obtain selutions at specific times
t0, i, ..., cofall increasing or all decreasing), use

tepan = [0 t1 ... tn);

Using MATLAB to Solve a System of

Problem Statement. Employ odedt to solve the following set of nonlinear ODEs from
t- Oto 20

dy: dy:
ot it

where y; - 2andva - latr- 0. Suchequations are referred to as predaror-prey eguations.

1.2y 6y 08y 03yv

Solution.  Before obtaining a solution with MATLAB, yvou must create a function to com-
pute the richt-hand side of the ODEs. One way to do this is to create an M-file as in

function yp = predoreyit,v)
yoo= [1.2% (L) -0.6%y L)y {2 ;-0 8%y (240, 3% {1 % (2]

We stored this M-file under the name: predorey . m
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Next, enter the following commands o specify the integration range and the initial
conditions;

== tapan = [0 Z0];
== w0 o= [2, 11:

The solver can then be invoked by
== [t,v] = odedf{fpredprey, tapan, yil;

This command will then solve the differential equations in predprey . m over the range
defined by t=par using the initial conditions found in 0. The results can be displayed by
simply typing
m»m oplocio,v)
which yields Fig. 19.2.

In addition to a nime series plot, it s also instructive to generate a state-space plof—
that is. a plot of the dependent variables versus each other by
== plotiy i 1, vis, 20
which yields Fig. 19.3,

As in the previous example. the MATLAB solver uses default parameters to control
various aspects of the integration, In addition, there is also no control over the differential
equations’ parameters. To have control over these features, additional arguments are in-
cluded as in

(8, ] = odedSlodefun, tspan, v0, options, pl, o2....)

FIGURE 19.2
Solution of plcd[_]ft.]l'plcy medel with MATLAR,

—1.|l'|
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EXAMPLE 19.2

4
3_ S
o e -+
S =
| | | | |
00 1 2 3 4 5 B
v
FIGURE 19.3

Statespace plot of predatorprey mode! with MATLAB.

where opt fone is a data strocture that is created with the odesec function to control fea-
tures of the solution, and p2, p2, ... are parameters thal you want o pass into ode fun,
The cdezet function has the general syniax

anticons = odeser {‘par.',val,, ‘par.' ,val., ...

where the parameter par, has the value val . A complete listing of all the possible para-
meters can be obtained by merely entering odezet at the command prompt. Some com-
monly used parameters are

"RalTol! Allows you to adjust the relative tolerance.
'2haTol! Allows you to adjusi the absolute tolerance.
"Initialéten’ The solver automatically determines the initial step. This option

allows you to set your own.

'MaxsStep' The maximum step defaults to one-tenth of the tspan interval.
This option allows you to override this default.

Using - -+ to Control Integration Options

Problem Statement.  Use ode22 to solve the following ODE from ¢t - Oto 4
dy

o 10 (- /OGTEL q 6y

where v((h - (1.5, Obtain solutions for the defauit (107 and Tor a more stringent (10
relative error tolerance.
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{a) RelTal = 1072 (b RelTol = 107%
FIGURE 19.4
Selution of ODE with MATLAR, For [- |, a smaller relative error tolerance is used and hence many
TIICHED SHEEIG (e taken,
Solution.  First, we will ereate an M-file to compute the right-hand side of the ODE:
function yp = dydtoi{t, ¥}
yp = 10%exp{-(L=2)*{L-2)/(2%.075"2))-0.6%y;
Then, we can implement the solver without setting the options. Hence the default value for
the relative error (107°) is automatically used:
»= odeld{ddydt, [0 £3, 0.5);
MNote that we have not set the function equal to output variables [+, 1. When we imple-
ment one of the ODE solvers in this way, MATLAB automatically creates a plot of the
results displaying circles at the values it has computed. As in Fig. 19.4a. notice how cde3
takes relatively large steps in the smooth regions of the solution whereas it takes smaller
steps in the region of rapid change around + - 2.
We can obtain a more accurate solution by using the cdeset function to set the rela-
tive error tolerance to 107
== opbions=odessl ('RelToel', le-4);
= oded d (@dydt, [0, 437, 0.5, opticnmi;
Asin Fig. 19.4b, the solver takes more small steps to attain the increased accuracy.
19.2 MULTISTEP METHODS

The one-step methods described in the previous sections utilize information at a single
point §; to predict a value of the dependent variable v | at a future point ;. | (Fig. 19.5a).
Alternative approaches, called muftistep methods (Fig. 19.58), are based on the insight that,
once the computation has begun, valuable information from previous points is at our



| Chapra: Applied Numerical | 19, 0DEs: Adaptive Text % The MeGrav-Hil

Mathods with MATLAB for ~ Methods and Stilf Systems Campisnas, 2004
Engineers and Scientists
352 ODEs: ADAPTIVE METHODS AND STIFF SYSTEMS

yi ¥

FIGURE 19.5
Graphical depiction of the fundamenial difference between [ | onestep and [ | multistep
methods for solving ODEs.

command. The curvature of the lines connecting these previous values provides informa-
tion regarding the trajectory of the solution. Multistep methods exploit this information to
solve ODEs. In this section. we will present a simple second-order method that serves to
demonstrate the general characteristics of multistep approaches.

19.2.1 The Non-Self-Starting Heun Method
Recall that the Heun approach uses Euler’s method as a predictor [Eq. (18,13)]

¥ ¥ fyh (19.4)
and the trapezoidal rule as a corrector [Eg. (18.16)]:

Fie vy fln I-.‘f'? 3
2

Viop Wi h (19.5)

Thus, the predictor and the corrector have local truncation errors of €h?y and OhH),
respectively. This suggests that the predictor is the weak link in the method because it has
the greatest error, This weakness is significant becaunse the efficiency of the ierative cor-
rector step depends on the accuracy of the initial prediction, Consequenily, one way o im-
prove Heun's method is to develop a predictor that has a local error of O(h?). This can be
accomplished by using Euler’s method and the slope at v;, and extra information from a
previous point vy, as in

"aﬂ M Fle.v)2h {19.6)

This formula attains € (k") at the expense of employing a larger step size 2. In addition,
note that the equation is not self-starting because it involves a previous value of the depen-
dent variable v;_;. Such a value would not be available 1n a typical initial-value problem.
Because of this fact, Egs. (19.5) and (19.6) are called the non-self-starting Heun method.



| Chapra: Applied Numerical | 19, 0DEs: Adaptive Text % The MeGrav-Hil

Mathods with MATLAB for ~ Methods and Stilf Systems Campisnas, 2004
Engineers and Scientists
19.2  MULTISTEP METHODS 353
¥

Slope = {1, . ¥ i)

N

{a)
Vi

Ly HEn .I_J_
Slope = fih % ;{'r.-lj v

R

=T

i F|" i

(b}

FIGURE 19.6
A graphical depiction of the non-selfstorting Heun method. | ) The midpoint method that is used
as a prediclor. | | The rapezoidal rule that is employed os o comector.

As depicted in Fig. 19.6, the derivative estimate in Eq. (19.6) is now located at the midpoint
rather than at the beginning of the interval over which the prediction is made, This center-
ing improves the local error of the predictor to O (k7).

The non-self-starting Heun method can be summarized as

Predictor (Fig. 19.6a): ¥ ;- vy fli. v/")2h (19.7)
e i)
Corrector (Fig. 19.66): v/ |- "~ 5 h (19.8)

iforj - 1,2,....m)

where the superscripts denote that the corrector is applied iteratively from j - 1 om0

"

obtain refined solutions. Note that vi" and y" | are the final resulis of the corrector
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EXAMPLE 19.3

iterations at the previous time steps. The ilerations are terminated based on an estimate of
the approximale error,

vl
Eg - Ml 100% (19.9)
‘il J' A
¥i

When £, is less than a prespecified error wolerance £, the iterations are terminated, At this
point, j - m. The use of Egs. (19.7) through (19.9) 10 solve an ODE is demonsirated in the
following example.

Non-Self-Starting Heun's Method

Problem Statement,  Use the non-self-starting Heun method o perform the same com-
putations as were performed previously in Example 18.2 using Heun's method, That s,
integrate v - 4e"% . 0.5y from ¢ - 0 1o 4 with a step size of I. As with Example 18.2,
the initial condition atr - Ois ¥ - 2. However, because we are now dealing with a mult-
step method, we require the additional information that v is equal 10 -0.3929953 atr - ~1.

Solution.  The predictor [Eq. (19.7)] is used to extrapolate lincarly from ¢ 110 1:
Vi oo- 0.3929953 . [4eMM7 . 0.5(]2 - 5.607005
The corrector [Eq. {19.8)] is then used to compute the value:
48 0.5(2) 0 4etHD. 0.5(5.607005) ,

2

- 6549331

vi- 2

which represents a true percent relative error of ~3.73% (true value - 6.194631), This
error is somewhat smaller than the value of -8, 18% incurred in the self-starting Heun.
Now, Eq. (19.8) can be applied iteratively to improve the solution:
3 3 4" 0,5(6.549331)

vioo2 : I 6313749

which represents an error of —1.92%. An approximate estimate of the error can be deter-
mined using Eq. (19.9);

6313749 . 6549331
fu 6.313740 100% - 3.7%
Equation { 19.8) can be applied iteratively until £, falls below a prespecified value of &5, As
was the case with the Heun method (recall Example 18.2), the iterations converge on a
value of 6.36087 (g - -2.68%). However, because the initial predictor value 1s more
accurate, the multistep method converges at a somewhat Taster rate.
For the second step, the predictor 1s

w2 [4eMM L 0.5(6.3608T)]2 0 1344346 £ - 9.43%

which is superior o the prediction of 12,0826 (s, - 18%) that was computed with the
original Heun method, The first corrector yields 1576693 (s, - 6.8%), and subsequent
iterations converge on the same result as was obtained with the self-starting Heun method:
1530224 (¢, - -3.09%). As with the previous step. the rate of convergence of the correc-
tor is somewhat improved because of the better initial prediction,
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19.2.2 Error Estimates

Aside from providing increased efficiency. the non-self-starting Heun can also be used to
estimate the local truncation error. As with the adaptive RK methods in Section 19,1, the
error estimate then provides a criterion for changing the step size.

The error estimate can be derived by recognizing that the predictor is equivalent to the
midpoint rule. Hence, its local truncation error 1s {Table 16.4)

| 1
E, - _;fa",x"-“i-sf.: : gfr‘f"{sp} {19.10)

where the subscript p designates that this 1s the error of the predictor. This error estimate
can be combined with the estimate of v;. ; from the predictor step to vield

1 1
True value - 3 - ,—Hz“jv‘”fépl (19.11)

By recognizing that the corrector 1s equivalent to the trapezoidal rule, a similar esti-
mate of the local truncation error for the corrector is {Table 16.2)

| . 1
E.- - —=vWheEy - =k FE 12
! iy (&) lzh Frign (19.12)

This error estimate can be combined with the corrector result v;. ; to give

1
True value - ¥ | - E—,}ﬂ"‘}‘m{&}} (19.13)

4

Equation {19.11) can be subtracted from Eq. {1Y.13) to yield

5
0 ¥y Eh-‘y”’]{s} (19.14)
where &£ 15 now between ¢, and #;. Now, dividing Eq. (19.14) by 5 and rearranging the
result gives

W

' 1

il | 303

bk L S S S R (19.15
5 ]21 ¥HE) |

Notice that the right-hand sides of Eqgs. (19.12) and (19.15) are identical, with the excep-
tion of the argument of the third derivative. If the third derivative does not vary apprecia-

bly over the interval in question, we can assume that the right-hand sides are equal, and
therefore, the lefi-hand sides should also be equivalent. as in

£ - (19.16)
Thus, we have arrived at a relationship that can be used to estimate the per-step truncation
error on the basis of two quantities that are routine by-products of the computation: the pre-
dictor (v ;) and the corrector (v ).
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EXAMPLE 19.4 Estimate of Per-Step Truncation Error

Problem Statement.  Use Eq. (19.16) to estimate the per-step truncation error of Exam-
ple 19.3. Note that the true values at 1 - 1 and 2 are 6194631 and 1484392, respectively.

Solution. Aty - 1, the predictor gives 5.607005 and the corrector yields 6.360863,
These values can be substituted into Eq. (19.16) to give

© 6.360865 - 5.607005

£ - 5

- 0L150722

which compares well with the exact error,
Eo- 6194631 6360865 - - 01662341

At 1 2, the predictor gives 1344346 and the corrector yields 15.30224, which
can be used w compute
1530224 - 1344346

- 0.37176

which also compares favorably with the exact error, F, - 1484392 1530224 .
- (L.45831.

The foregoing has been a brief introduction to multistep methods. Additional informa-
tion can be found elsewhere (e.g., Chapra and Canale, 2002). Although they still have their
place for solving certain types of problems, multistep methods are vsually not the method
of choice for most problems rowtinely confronted in engincering and science, That said,
they are still used. For example, the MATLAB function ode 113 is a multistep method. We
have therefore included this section o introduce you 1o their basic principles.

19.3 STIFFNESS

Stiffness is a special problem that can anise in the solution of ordinary differential equa-
tons. A stiff svstem 13 one involving rapidly changing components together with slowly
changing ones. In some cases, the rapidly varying components are ephemeral transients
that die away quickly, after which the solution becomes dominated by the slowly varying
components. Although the transient phenomena exist for only a short part of the integration
interval, they can dictate the time step for the entire solution.

Both imdividual and systems of ODEs can be stlf, An example of a single sull ODE is

.f.
%- 1000V - 3000 20006 ¢ (19.17)

If w(() - 10, the analytical solution can be developed as

¥ 3 0998 "M 2002 ! (10.18)

As in Fig. 19.7, the solution is initially dominated by the fast exponential term (e~ ).

After a short period (1 = 0.003), this transient dies out and the solution becomes governed
by the slow exponential (¢7).
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FIGURE 19.7

Plot of a stff soluiion of a single ODE. Althaugh the solution appears o sart at 1, thee i
actually a fast hansient fom y - Ote 1 that cccurs in less than G005 fime unit, This fransient is
pu;:rccptib?{: L};"J*,—' when the responss is vienaed an thee finer imescale in the inset,

Insight into the step size required for stability of such a solution can be gained by ex-
amining the homogeneous part of Eq. (19.17):

dt

If {0} - vy, calculus can be used to determine the solution as

ay (19.19)

"I . .\.‘“e‘. il

Thus, the solution starts at vy and asymptotically approaches zero,
Euler’s method can be used to solve the same problem numerically:
dv;

Vipo v
' odr

Substituting Eq. (19.19) gives
Vioro ¥ioooayih
or
iy wille ah) (10,20}

The stability of this formula clearly depends on the step size fi. That is, -1 - ali- must be
less than 1. Thus. it b = 2/a, v+ - asi-

For the fast transient part of Eqg. {19.18), this criterion can be used to show that the step
size to maintain stability must be <=2/1000 - 0.002. In addition, we should note that,
whereas this criterion maintains stability (i.e., a bounded solution), an even smaller step size
would be required to obtain an accurate solution. Thus, although the transient occurs for only
a small fraction of the integration interval. it controls the maximum allowable step size.

Rather than using explicit approaches. implicit methods offer an alternative remedy.
Such representations are called implicit because the unknown appears on both sides of the
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EXAMPLE 19.5

equation. An implicit form of Euler’s method can be developed by evaluating the deriva-
tive at the future time:
dvi.

Nl ¥ . h

This is called the backward, or implicie, Euler’s method. Substituting Eg. {19.19) yields

Vi1 ¥iooaviah
which can be solved lor
i
I ah
For this case, regardless of the size of the step. - - 0Oasi- - . Hence. the approach is
called unconditionally stable.

Yoo

(19.210)

Explicit and Implicit Euler

Problem Statement.  Use bath the explicit and implicit Euler methods to solve Eq. ( 19.17),
where v(0) - 0. (a) Use the explicit Euler with step sizes of (.0005 and 0.0015 to solve for
vhetweent - () and 0.006. (b} Use the implicit Euler with a step size of (.05 to solve for v
between ) and (0.4

Solution.  (a) For this problem. the explicit Euler’s method is

Yiorco w0 1000w 3000 2000 b
The result for £ - 0.0005 is displayed in Fig. 19.8a along with the analytical solution.
Although it exhibits some truncation error. the result captures the general shape of the an-
alytical solution. In contrast, when the step size is increased to a value just below the sta-

bility limit (/ - (L0013, the solution manifests oscillations. Using i = 0.002 would re-
sult in a totally unstable solution—that is. it would go infinite as the solution progressed.

{b) The implicit Euler’s method is
Viop - v (- 1000y - 3000- 2000 Y i
Now because the ODE is Hnear, we can rearrange this equation so that y;. 5 is isolated on
the left-hand side:
- 30004 - 2000ke o
- 10004

The result for & - 0.05 is displayed in Fig. 1985 along with the analytical solution. Notice
that even though we have used a much bigger step size than the one that induced instabil-
ity for the explicat Euler, the numerical result tracks nicely on the analytical solution.

Yio1-

Systems of ODEs can also be stiff. An example is

. DSy 3w (19.22a)
et
ay. 100y, - 301ys (19.22h)

dr
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¥
1.5

Exact
h = 0.0005
| | | |
0 0.002 0.004 0.006
¥ {a)

—
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!

tbt

FIGURE 19.8
Solution of o sift CDE with | ] the t_:xp|ic.ir and [ 1rT;p|it;ir Fuler methods,

For the initial conditions v (0) - 52,29 and y2(0) - 83,82, the exact solution is
.‘5:1 . 529‘56’ ER. T Dﬁ?? 20101 “923“}
va o 17.83¢ ML g5 g 02010 (19.23h)

Note that the exponents are negative and differ by about iwo orders of magnifude. As with
the single equation, it is the Iarge exponents that respond rapidly and are ai the heart of the
system’s stiffness.

An implicit Euler’s method for systems can be formulated for the present example as

Vigors vigo U 5vieor- 3y b {19,241
oo vag e (HO0wy .y 30Tva, il (19.24h)
Collecting terms gives
(0 Shyei v- 3vae 1 v (19.254)
100v ;¢ (h- 30Hva, 5o ¥y {19.25h)

Thus, we can see that the problem consists of solving a set of simultaneous equations for
each time step.
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EXAMPLE 19.6

For nonlinear ODEs, the solution becomes even more difficult since it involves solving a
system of nonlinear simultancous equations (recall Section 11.2), Thus, although stability is
gained through implicit approaches, a price is paid in the form of added solution complexity,

19.3.1 MATLAB Functions for Stiff Systems
MATLAB has a number of built-in Tunctions for solving stff systems of ODEs. These are

-+, This function is a variable-order solver based on numerical differentiation
formulas, [tis a multistep selver that optionally wses the Gear backward differentiation
formulas. This is vsed for stiff problems of low 0 medium accuracy.

------ . This function is based on a modified Rosenbrock formula of order 2. Because it
is a one-step solver, it may be more efficient than ode %= at crude tolerances. It can
solve some kinds of stiff problems better than ocdel%s.

----- « This function is an implementation of the rapezoidal rule with a “free” inter-
polant. This is used for moderately suff problems with low accuracy where vou need a
sofution without numerical damping.

------- . This is an implementation of an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule and a second stage that is a backward differentiation for-
mula of order 2. This solver may also be more efficient than cdel5s at crude tolerances.

MATLAB for Stiff ODEs

Problem Statement. The van der Pol equation is a model of an electronic circuit that
arose back in the days of vacuum tubes,
tf:_‘r'g d}'l
— - ey
dt dt

¥i) vi- 0 (E19.6.1)
The solution to this equation becomes progressively stiffer as o gets large, Given the ini-
tial conditions, v - dy /di - 1, use MATLAB to solve the following two cases:
(a) for u - 1, use odeds tosolve from ¢ - 0 to 20; and (b) for o - 1000, use ode2is o
solve from ¢ - 0 to 6000,

Solution.  (a) The first step is to convert the second-order ODE into a pair of first-order
ODEs by defining

dv
dt

Using this equation, Eq. (E19.6.1) can be written as

d}'g
dt

{1 ¥l v 0

An M-file can now be created to hold this pair of ditfferential equations:

function yo = vanderpol (f,v,ml
Yo o= Iy l2)pmuE{l-y (11" 2) = {2)-yi{l)];
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FIGURE 19.9
Salutions for van der Pel's equation. | | MNanshff form solved with ode4s and § ) stiff form solved
with ode2isg,
Notice how the value of j1 is passed as a parameter. As in Example 19,1, cde4s can be in-
voked and the resulis plotted;
== [t,y] = oded5i{@vanderpol, (¢ 201, [1 11,01.1);
== oploci{t,yl: 1), "= by, 2}, -]
== legendi ‘v, 'yvia'l;
Ohbserve that because we are not specifying any options, we must use open brackets [ as
a place holder. The smooth nature of the plot (Fig. 19.9a) suggests that the van der Pol
equation with g¢ -1 is not a stff system.
ib} If a standard solver like ade 45 is used for the stiff case (g - 10000, it will fail miser-
ably (try it, if you like). However, ode2 2s does an efficient job:
== [r,y] = odezlgi@vanderpol, [0 &000), (1 11, [1,1000);
=m plotit,yi{:, 11}
We have only displayed the v, component because the result for v2 has a much larger scale.
Notice how this solution (Fig. 19.90) has much sharper edges than is the case in Fig. 19.94.
This 1s a visual manifestation of the “stiffness™ of the solution,
19.4 MATLAB APPLICATION: BUNGEE JUMPER WITH CORD

In this section, we will use MATLAB to solve for the vertical dynamics of a jumper con-
nected to a stationary platform with a bungee cord. As developed at the beginning of
Chap. 18, the problem consisted of solving two coupled ODEs for vertical position and
velocity, The differential equation for position is

dx

- {19.26)
dr !
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EXAMPLE 19.7

The differential equation for velocity is different depending on whether the jumper has fallen
0 a distance where the cord is fully extended and begins to streich, Thus, if the distance
Fallen is less than the cord length, the jumper is only subject w gravitational and drag forces,
dv . Cd 3
I g signiu) . e (19.27a)

Once the cord begins to stretch, the spring and dampening Torces of the cord must also be
inchuded:

dv
dt

The following example shows how MATLAB can be used to solve this problem.

.- k
g sign(w) e - L) L (19.275)
i m i

MATLAB for Stiff ODEs

Problem Statement.  Determine the position and velocity of a bungee jumper with
the following parameters: L - 30m, g- 981 m/s°, m- 681 kg, ¢g - 0.25 kg/m,
k- 40N/m, and y - 8N - s/m. Perform the computation from 1 - 0 to 50 s and assume
that the initial conditions are x(0) - w0y - 0,

Seolution.  The following M-file can be set up to compute the right-hand sides of the ODEs:

function dydt = bungeeit,v,L,od,m, k, gamna)

g = S.81;

cord = O

if w{i} » L %determine if the cord exerts a force
cord = K/m*{v {1} -L)+gamma/m*y (2] ;

end

dydt = [viZl: g signi{y {2} *cd/m*v(2)"2 cord] ;

FIGURE 19.10
PFlot of distance and velocity of a bunges jumper,
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play them on a plot

== L.yl

== legend{ "x (m)','wv

maotion.

= odeds (Bbunges, [0 501, [0 O, []
== plot{o,-wi:, 1), "=, t,vis,2 ,% 2"}
{mfall

Notice that the derivatives are returned as a column vector because this is the format
required by the MATLAB solvers,
Because these equations are not stiff, we can use ode43 1o obtain the solutions and dis-

+30,0.25,68.1,40,8);

As in Fig, 19.10, we have reversed the sign of distance for the plot so that negative distance
is in the downward direction. Notice how the simulation captures the jumper’s bouncing

PROBLEMS

19.1 Predator-prey models were developed independently
in the early part of the twentieth century by the Iralian math-
ematician Wito Volterra and the American biologist Alfred
Lotka. These equations are commonly called Lotka-Vilterra
eguarions, The simplest example is the following pairs of
ODEs:

% < oaxe hxy
d ¥
d—:- ceye dxy

where x and v - the number of prey and predators, respec-
tively, @ - the prey growth rate, ¢ - the predator death rate,
and b and o - the rates characterizing the effect of the
predator-prey interactions on the prey death and the predator
growih, respectively. Given the parameter values: a - 1.5,
b 07, ¢ 09, and o - 04, integrate these equations
from ¢ 0 to 30 given the initial conditions x - 2 and
v L Develop plots of x and v versos r and v versus . Ob-
tain your solutions with {a} Euler’s method with a step-size
of 0.1, (b} the fourth-order RK method with a step-size of
0.1, and () the oded S function.

19.2 An example of an ineresting nonlinear model based
on atmospheric fluid dvnamics is the Lorenz eguarions de-
veloped by the American meteorologist Edward Lorene:

fx

_ X - ay
dr

oy

_ X v X3I
et ’

s Bzeoxv
dt ‘

Lorenz developed these equations to relate the intensity of
atmospheric fluid motion v 1o temperature variations v and =
in the horizontal and vertical directions, respectively. Given
the parameter valees: o - 10, & 2666667, and r - 28,
integrate these equations from ¢ - 0 o 20 given the initial
conditions x + v+ z- 5 Develop plots of x, v, and 2 ver-
S5 LV versus oz versus vand o oversus v Obtain your solu-
tions with {a) the fowrth-order RK method with a step-size of
0.1, (b} the cde23 function, {¢) the ode4S function, and
(e} the ocde2 3 b function.

193 Solve the following initial-value problem over the

interval fromy - 2w 3
dy
— D3y !
dr ) ¢

Use the non-self-starting Heon method with a step size
of 0.5 and initial conditions of y{L.5)- 5222138 and
w201 4143883, Trerate the corrector to &, - O.0%,
Compute the percent relative errors for your resalts based on
the exact solutions obtained analytically: v(2.5) - 3.273888
and y(3.0) - 2577988,

19.4 Solve the following initial-value problem over the

iterval rom e - Ot .5
d\'l.' !1
—_ LY L y
dr ¥ A

Use the fourth-order RK method to predict the first value at
r- 0.25, Then use the non-self-starting Heun method tw
make the prediction at ¢ - 0.5, Note: w0y - 1.
19.5 Given

v

— 00000y - 99,999
et
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{a) Estimate the step size reguired two maintain stahility
using the explicit Euler method.

(b) If w(0) - 0, use the implicit Euler 1o obtain a sofution
from ¢ - 0 to 2 using a step size of (.1,

196 Given
d—"l - 3Msin 7o vd-
dr

If w00 - 0, use the implicit Euler o obtain a solution from

£+ 0o 4 using a step size of 0.4,

19.7 Given

Icost

dx

d—:- 999y, - 1999y,
92 000, - 2000%s
i

If a0 - w20y - 1, obtain a solution from ¢ - 0 to 0.2
using a step size of 0,05 with the (a) explicitand (b) implicit
Euler methods.

19.8 The following nonlinear, parasitic ODE was suggested
by Hormbeck (1975):

‘;—'; C Ay )

If the initial condition is v(0) - (.08, obtain a solution from

LV (v H

{a} Analytically.

{b) Using the fourth-order RK method with a constant step
size of (L03125,

(¢} Using the MATLAB function ode4s,

{d) Using the MATLAB function oceZz.

{e) Using the MATLAB function ode23th,

Present your results in graphical form.

19.9 Recall from Example 17.5 that the following humos

function cxhibits both flat and steep regions over a relatively

short ¥ range,

097 0.04 6

Fivk-

(r. 037 001 f{x

Determine the value of the definite integral of this function
between v 0 and 1 using (a) the guad function. and
(b) oisd s,

1910 The oscillations of a swinging pendulum can be sim-
ulated with the following nonlinear model:

o
F - ?Siﬂﬂ ' D
where # - the angle of displacement, ¢ - the gravitational

constant, and /- the pendulum length. For small angular
displacements. the sin & 15 approximately equal to 8 and the
model can be linearized as

4 g

dr? !H 0
Lse odeds to solve for # as a function of time for both
the lincar and nonlinear models where /- 0.6 m and
g- 9.81 m/s”. First, solve for the case where the initial
condition is for a small displacement (¢ - 7/8 and
dd fdr - ). Then repeat the calculation for a large displace-
ment (6« g /2 and d6/dr - 0). For each case, plot the lin-
ear and nonlinear simulations on the same plot,
1901 The logistic model 15 used to simulate population as
in

dp
—  kgm(1- )
dr g P Poax P
where p - population, k., - the maximam growth rate

under unlimited conditions, and pu. - the carrying capac-
ity. Simulare the world's population from 1930 to 2000 using
the oded s function. Employ the following initial conditions
and parameter values for vour simulation: p (in 1950} -
2,555 million people. kg, - 0L026/ye, and pu, - 12,000
million people. Have the function generate output cormre-
sponding to the dates for the following measured population
data. Use the results to compute the sum of the squares of the
residuals between the data and the simulation output.

1950 1245 [9e0 1965 1970 1975
2555 2780 3040 3344 3704 4087
1580 1985 14950 1555 2000
4454 485D 5270 54686 &LF9




| Chapra: Appliad Numerical | 20. Eigenvalues Taxt 5 Tha MR-l
Methods with MATLAB for Campisnas, 2004

Engineers and Scientists
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Eigenvalues

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to introduce vou to methods for solving
eigenvalue problems. Specific objectives and topics covered are

*  Understanding how eigenvalues provide the solution for a special form of
homogeneous linear alzebraic equations.

®*  Understanding how eigenvalue problems arise in engineering and scientific
problems dealing with vibrating and oscillating systems.
Knowing how to determine and interpret eigenvectors.
Knowing how to implement the polynomial method with MATLAB,
Knowing how to implement the power method to determine either the highest
or lowest eigenvalue along with its accompanying eigenvector.

*  Knowing how to determine eigenvalues and eigenvectors with the MATLAB
=ig function.

common in engineering and scientific problem contexts involving vibrations and elas-
ticity. In addition, they are used in a wide variety of other areas including the solution
of linear differential equations and statistics,
Before describing numerical methods for solving such problems, we will present some
general background information. This includes discussion of both the mathematics and the
engineering and scientific significance of eigenvalues.

MATHEMATICAL BACKGROUND

Chapters 7 through 11 dealt with methods for solving sets of linear algebraic equations of
the general form

[Alx - b

E igenvalue, or characteristic-value, problems are a special class of problems that are

365
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20.2

Such systems are called nenhomogeneonus becanse of the presence of the vector { b} on the
right-hand side of the equality. If the equations comprising such a system are linearly
independent (1.e., have a nonzero determinant), they will have a unigue solution. In other
words, there is one set of ¥ values that will make the equations balance.

In contrast, a homopgeneous linear algebraic system has the general form

[A}x - 0
Although nontrivial solutions (i.e., solutions other than all x°s - ) of such systems are
possible, they are generally not unique. Rather, the simultaneous equations establish rela-
tionships among the x's that can be satisfied by various combinations of values,
Eigenvalue problems associated with engineering are typically of the general form

{ayy - Ay - dypaxs - e dpgty - 0
apxy o lappe Rz oo Xy - 0
dy Xy - dyrxac o (o Ay, 0

where 4 is an unknown parameter called the eigenvalue, or characteristic value. A solution
[x] for such a system is referred to as an eigenvector. The above set of equations may also
be expressed concisely as

[(A]- alll]x- 0 (20.1)

The solution of Eq. (20.1) hinges on determining 4. One way to accomplish this is
based on the fact that the determinant of the matrix [[A} - }k[.’]] must equal zero for non-
trivial solutions to be possible. Expanding the determinant yields a polynomial in A, which
is called the characteristic polyaemial. The roots of this polynomial are the solutions for
the eigenvalues. An example of this approach, called the pofynomial method, will be pro-
vided in Section 20.3. Before describing the method, we will first describe how eigenval-
ues arise in engineering and science.

PHYSICAL BACKGROUND

The mass-spring system in Fig. 2001a is a simple context to illustrate how eigenvalues
oceur in physical problem settings. It also will help to illustrate some of the mathematical
concepts introduced in Section 20.1.

To simplity the analysis, assume that each mass has no external or damping forces act-
ing on it. In addition. assume that each spring has the same natural length [ and the same
spring constant k. Finally, assume that the displacement of each spring is measured relative
to its own local coordinate system with an origin at the spring’s equilibrium position
{Fig. 20.1a). Under these assumptions. Newton’s second law can be employed to develop
a force balance for each mass:

dzi.
nn—tl- Ckxy e klxa o x
dr?
and
EZ
mzr s kixa - xy kxa
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gl = JIC SRR i
a | | I
| |
| |
| | *
| |
{b = I I | ]
0 I I sy .
0 x [

FIGURE 20.1

Pasitioning the masses away from equilibrivm creates forces in the springs that on release lead
to cscillations of the masses. The pasitions of the mosses can be releranced to local coordinates
with origins ot their respaciive equilibrium pasitions.,

where x; is the displacement of mass { away from its equilibrinm position (Fig. 20.15). By
collecting terms, these equations can be expressed as

m]d_i ok 2ap- o) 0 (20.2a)
dr?
ﬂﬂ.?ﬁ
- = kixy o 2xal .
my—a - klxis ) 0 {20.25)

From vibration theory, it is known that solutions o Eq. (20.2) can take the form
X X sin(wr) (20.3)

where X; - the amplitude of the vibration of mass i and w - the frequency of the vibra-
tion, which is equal to

o = (20.4)
T,
where T, is the period. From Eqg. (20.3) 1t follows that
X X sinfawr) (20.5)

Equations {20.3) and (20.5) can be substituted into Eq, (20.2), which, after collection of
terms, can be expressed as

2k k
(—- mf)xl- ZXao 0 {20.6a)
iy 1y
& 2%
P ( - wl)X;- 0 {20.60)
my i

Comparison of Eq. (20.6} with Eq. (20.1) indicates that at this point, the solution has
been reduced to an eigenvalue problem. That is, we can determine values of the eigenvalue
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EXAMPLE 20.1

w® that satisfy the equations. For a two-degree-of-freedom system such as Fig. 20.1, there
will be two such values. Each of these eigenvalues establishes a unique relatonship
between the unknowns X called an efgenvecror, Section 20.3 describes a simple approach
10 determine both the eigenvalues and eigenvectors, [t also illusirates the physical signifi-
cance of these quantitics Tor the mass-spring system,

THE POLYNOMIAL METHOD

As stated at the end of Section 2001, the polvromial method consists of expanding the
determinant to generate the characteristic polynomial. The roots of this polynomial are the
sofutions for the cigenvalues. The following example illustrates how it can be used to
determine both the eigenvalues and eigenvectors for the mass-spring system (Fig. 20.1).

The Polynomial Method

Problem Statement.  Evaluate the eigenvalues and the eigenvectors of Eq. (20.6) for the
case where my - mo - 40 kgand & - 200 N/m.,

Solution.  Substituting the parameter values into Eq. (20.6) yields

(10 o)X - 5X; 0

S 5Xy - (100 whXa o 0

The determinant of this system is

(@) 20w’ 75- 0
which can be solved by the quadratic formula for w® - 15 and § s 2. Therefore, the fre-
quencies for the vibrations of the masses are - 3.873 s " and 2.236 5 ', respectively.
These values can be used to determine the periods for the vibrations with Eq. (20.4). For
the first mode, 7, - 1,62 s, and for the second, T, - 2.81 s,

As stated in Section 20,1, a unigue set of values cannot be obtained for the unknown

amplitudes X. However, their ratios can be specified by substituting the cigenvalues back
into the equations. For example, for the first mode (e - 155 %)

(1 15X, 5K, 0
5K - 10 15X, 0
Thus, we conclude that X, - - X». In a similar fashion for the second mode (w® - 55 7).

Xy X2 These relationships are the eigenvectors,

This example provides valuable information regarding the behavior of the system in
Fig. 20.1. Aside from its period, we know that if the system is vibrating in the first mode.
the eigenvector tells us that the amplitude of the second mass will be equal but of opposite
sign 1o the amplitude of the first. As in Fig, 20.2a, the masses vibrate apart and then
together indefinitely,

[n the second mode, the cigenvector specifies that the two masses have equal ampli-
tudes at all times. Thus, as in Fig. 20,25k, they vibrate back and forih in unison, We should
note that the configuration of the amplitudes provides guidance on how to set their initial
values to attain pure motion in either of the two modes, Any other configuration will lead
to superposition of the modes,
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=
2815

{a) First maode (8] Second mode

FIGURE 20.2
The orincipal mades of vibrotion of two equal mosses connected by three identicol springs
betwesn fixed walls,

20.4

We should recognize that MATLAB has built-in functions to facilitate the polynomial
method. For Example 20,1, the polv function can be used to generate the characteristic
polynomial as in

== Aoz [10 -5:;-5 10];:
== o= poly Al

B o=
1 -0 7%

Then. the root s function can be emploved to compute the eigenvalues:
»r rootsip)

ans =
1

oL

THE POWER METHOD

The power method is an iterative approach that can be employed o determine the largest
or dominant eigenvalne, With slight modificarion, it can also be employed 1o determine the
smallest value. It has the additional benefit thai the corresponding eigenvector is obiained
as a by-product of the method,
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To implement the power method, the system being analvzed is expressed in the form

[Al % A x (20.7)
As illustrated by the following example, Eq. (20.7) forms the basis for an ilerative solution
techmigue that eventually yields the highest eigenvalue and its associated cigenvector,
Power Method for Highest Eigenvalue

Problem Statement.  Using the same approach as in Section 20.2, we can derive the fol-
lowing homogeneous set of equations for a three mass—four spring system between two
fixed walls:

2k ~ k
(—' &J")X]- — X -0
My iy
. ixl . (Zk . (,)Z)Xz- k X_-:.- ]
ma i iz
k 2k
L =X, (— m?)x]- 0
My fits

If all the masses m - 1 kg and all the spring constants & - 20 N/m, the system can be
cxpressed in the matrix format of Eq. (20.1) as

40 - 20 0
|:- 20 40 - ZD} - Af- 0
0 - 20 40
where the eigenvalue A is the square of the angular frequency w”. Employ the power
method to determine the highest eigenvalue and its associated eigenvector,
Solution.  The system is first written in the form of Eq. (20.7x
4GX[ - ZUXE ’ ;’\-X1
S 20X 40Xy 20Xy AN
< 20X.- 40X - AXS
At this point, we can make initial values of the X's and use the left-hand side w compute an
cigenvalue and cigenvector, A good first choice is o assume that all the X's on the left-hand
side of the equation are equal 1o one:
400y - 2000 - 20
S 2000y - 4001y 2001y - 0O
S 2001 401y - 20

Next, the right-hand side is normalized by 20 1o make the largest element equal 1o one;

B

Thus, the normalization factor is our first estimate of the eigenvalue (20) and the corre-
sponding eigenvectoris- 1 0 17, This iteration can be expressed concisely in matrix
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form as

40 20 0 | 20 1
|:- 20 40 -Zﬂ]{l}- {E}} 20{0}
0 20 40 | 20 1

The next iteration consists of multiplying the matrixby- 1 0 17 1o give

S R R

Therefore, the eigenvalue estimate Tor the second iteration is 40, which can be employed o
determine the error estimate:

40 20

By o

‘- 100% - 50%

The process can then be repeated.

Third iteration:

40 20 0 | 60 - 75
|:- 20 40 - “ED:I by - 80 - 8D |
0 20 40 1 &l - 075

where -£, - 150% {which is high because of the sign change).

Fourth freration:
40 - 20 0 - 075 - 50 - 071429
[-mm -zuH | ]-{m]-m! : }
0 20 40 - 075 - 50 - 071429

where -£, - 214% (which is high because of the sign change).

Fifth iteration:
40 20 0 - 0.71429 - 485714 - 070833
{ 20 40 - ED:| | | } . { 683714 } : 68.5714{ 1 }
0 20 40 - 0.71429 - 485714 - 070833

where £, - 2.08%.
Thus., the eigenvalue is converging. After several more iterations, it stabilizes on a
value of 68.28427 with a corresponding eigenvector of - - 0.707107 1 - 0.707107 .

Note that there are some instances where the power method will converge to the
second-largest eigenvalue instead of o the largest. James, Smith, and Wolford (1983) pro-
vide an iflustration of such a case, Other special cases are discussed in Fadeev and Fadeeva
(1963).

In addition, there are sometimes cases where we are interested in determining the
smallest eigenvalue, This can be done by applying the power method 1o the matrix inverse
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of [A]. For this case, the power method will converge on the largest value of 1/3—in other
words, the smallest value of 4. An application to find the smallest eigenvalue will be left as
a problem exercise.

Finally, after finding the largest eigenvalue, it is possible to determine the next highest
by replacing the original matrix by one that includes only the remaining eigenvalues. The
process of removing the largest known eigenvalue is called deflarion.

We should mention that although the power method can be used to locate intermediate
values, better methods are available for cases where we need to determine all the eigenval-
ves as described in Section 20.5. Thus, the power method is primarily used when we want
to locate the largest or the smallest eigenvalue.

MATLAB FUNCTION: - - -

As might be expected, MATLAB has powerful and robust capabilities for evaluating eigen-
values and eigenvectors. The function eig, which is used for this purpose, can be used to
generate a vector of the eigenvalues as in

== o= oeigl- )

where - is a vector containing the eigenvalues of a square matrix - . Alternatively, it can be
invoked as

=x o[- 1 = elg{ )
where - is a diagonal matrix of the eigenvalues and - is a full matrix whose columns are
the corresponding eigenvectors.

Use of MATLAB to Determine Eigenvalues and Eigenvectors

Problem Stotement.  Use MATLAB to determine all the eigenvalues and eigenvectors
for the system described in Example 20,2,

Selution.  Recall that the matrix to be analyzed is
40 20 0
|:- 200 40 Zt}:l
0 20 40
The matrix can be entered as
s» A = [40 =320 0;-20 40 -20;0 -20 407:
If we just desire the eigenvalues we can enter
== oB o= el (Al

=

0y s b

[ T =

Pl -

o

W= 3N
D
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Notice that the highest eigenvalue (68,2843} is consistent with the value previously deter-
mined with the power method in Example 20.2.
If we want both the eigenvalues and eigenvectors, we can enter
»x» [w,d]l = eiglal
0.5000 -0.7071 -0.5000
0.7071 -0, 0000 07071
0.5000 0.7071 ~0.5000
d =
11,7187 N &
i 40,0000 K
] G B, 2843
Again, although the results are scaled differently, the eigenvector corresponding to the
highest eigenvalue - - 0.5 07071 - 0.5-7 is consistent with the value previously
determined with the power method in Example 20.2- - 0.707107 1 - 0.707107- .
PROBLEMS

2001 Determine the smallest eigenvalue and the correspond-
ing eigenvector for the system in Example 20,2,
20.2 Given the following system

2.0 2 10
8 3-a 4
10 4 5%

fa) Use minors to expand the determinant.

(b} Evaluate the eigenvalues using the polynomial method.

(e} Use the power method 1o determine the highest
eigenvalue.

(d} Use the power method to determine the lowest
eigenvalue,

2003 Use the polynomial method to determine the eigenval-

ues and the eigenvectors for the following system:

4 7 3 X o 0 0 Xy
T 8 2 ¥a - A0 400 Xz
13 2 1] | x 00 2] |x

2004 Given the following system

2 0.36p° . o 0
: 1 0
0 1 2. 036p? -1
0 0 1 2. 0.36p°

(a) Evaluate the eigenvalues using the polynomial method,

(hy Use the power method to determine the highest
eigenvalue.

(c) Use the power method to determine the lowest
eigenvalue,

20.5 Engineers and scientists use mass-spring models to

eain insight into the dynamics of structures under the influ-

ence of disturbances such as earthquakes, Figure P20.3

shows such a representation for a three-story building.

For this case, the analysis is limited to horizontal motion
of the structure. Using the same approach as developed in
Section 2001, force balances can be developed for this sys-
tem as

ky- k k>
( J s m‘?)h —X 0
| my
ks ka- & k
=X (3 : w)xz- =X
L It 2
k_3X? (k_* ml)x; {)
iy iy
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ey = 8,000 kg

k, = 1,800 kN/m

£

s = 10,000 kg

k. = 2,400 kN/m

i

m, = 12,000 kg

k, = 3,000 kN/m

A o T e T Eavey

FIGURE P20.5

Determine the eigenvalues and eigenvectors for this system.
Graphically represent the modes of vibration for the struc-
ture by displaying the amplitudes versus height for each of
the eigenvectors, Normalize the amplitudes so that the dis-
placement of the third floor is one.

206 Figure P20.6 shows an LC network for which
Kirchhofl’s valtage law can be used to develop the follow-
ing system of ODEs:

tfzf] |
n o L0
s G g i)
&1 P
LJF' a’[f:' 3) - a{ir' iz)- 0
4y

3@' af-_‘\' C—!zl{fg- - 0

where L; - inductance of inductor j (H - 18%/F), i - cur-
rent (amp}, and C; - capacitance of capacitor j (F). Using
the same approach as described in Section 20.2, determine
the eigenvalues and eigenvectors for this system if all
L's - 0005 Hand the C's - 0,001

2.7 Consider the mass-spring system in Fig. P20.7. Deter-
mine the eigenvalues and eigenvectiors for this system for
the case where myy - Lkgomy - 2kg andk - | Nim.

FIGURE P20.6
An - circuit,

—--13

FIGURE P20.7

20,8 The two spring system studied in Example 20.1 can be
simulated by solving the following differential equations:

tizn
— - - Axpe Sixx- oxp)
P 1o Slex
d* vz
Fz_ C8xae xS

Integrate these equations and display the results graphically
for the following initial conditions: {a) x; - x;- 1, and
{hixy - 1oas - - 006 In both cases. use zero initial condi-
tions for the velocities, Discuss yvour resulis.

2009 Develop an M-file wo determing the highest eigenvalue
and the associated eigenvector with the power method. Test
it by for the system from Prob, 20.2.

2010 Develop an M-file to determine the lowest eigenvalue
and the associated eigenvector with the power method. Test
it by for the system from Prob, 20.2.
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APPENDIX A
MATLAB BUILT-IN FUNCTIONS

aba. 25

acos, 25
hasseld, 256
chol, 169-170
cond, [80-181, 238
comv, 119
dolguad, 320
decony, HE
diap. 35

eig, 372-373

& lfun, 25

apa. 65

art, 320

arror, 38

axp. 25

ave, 133
factorial, 30, 44
teval, 49-50, 327
fminssarch, 231
format long, 17
format short, 18
fprinti, 36-37
frero, 113-116
grid, 27

heln 33

heln elfun, 25
mumes, 277, 319, 364

inline, 50, 327

Trpat, 34

interpl, 274-277

v 1330 135-136. 176
Tength, 26

Linspacs, 21

Lo, 25

Logl, 25

Dogl, 25,94

Loglog, 30

Loom, 25

Logapacs, 21
Tookfor, 28

L. 166-167

maz, 29, 155

mean, 51

norm, [80-181
odel13, 348, 356
odel5s, 360

ode?, 347-348, 350-351
ode 2z, 360-361
ode2ic, 360

ode2ich, 360

oded 5, 348-350, 361, 363
odeset, 350-351

ones, 20

optimsen, 5116, 231

pohip, 275

pi. 18

plot, 2628

poly, 118, 369
polyfic, 217,230, 239, 252-255
polywval, T8, 218, 239, 252-255
guad, 318-319
craadl, 318
realmax, 64
raalmin, 63
roota, HT-119, 369
semi Lagy, 30
sign, 41, 322

sim, 25

size, 134

apline, 272-274
sgrt, 25-26

sgrom, 25

sum, 169

tanh, 5, 25-26
tirle, 27

traps, 300

wihie, 19

whos, 19

wlabel, 27
vilabel, 27

meroas, 20
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APPENDIX B
MATLAB M-FILE FUNCTIONS

M-file Name Description Page
bisectisan Root location with bisection D5
Euleds Infegration of a single ordinary differentiol equation with Euler’s methed 328
Gausziaive Salving lireor syskems with Gauss elimination without pivoling VA
GaugsPivot Selving linear systems with Gouss elimination with partial pivoting 155
GauszSaidel Salving linear systems with the Gauss-Seidel method 188
incaearch Root location with an incremantal search Ba
Lagrange Interpolation with the Legrange polnomicl 245
linregr Fiting o straight line with linear regrassion 217
Nawtint Interpolation with the Mewlon pobmomicl 24
newtraph Root location with tfhe Mewion-Rophson method Pl
Fomberg Intagration of a tunction with Remberg integration a1
trap Integration of o lunction with the composite rapezoidal ile 291
trapunag Integrotion of unequispaced dota with the rapezoidal nle 300
Tridiag Solving ridiagonol inear systems 157

376
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Accuracy, 59-6()
Adams-Bashiorth-Mowlton solver, 348
Adaptive methods and sl systems,
345-36d
error estimates, 335-356
multisiep methods, 351-356
non-sell-staring Heoun method.
352-354
Runge-Kuorta. Se¢ Adaptive Runge-
Kutta methods
stilfncssfsill systems. See
Snfinessisnll systems
Addaptive guadrature. 306, 315314
Adaptive Rupge-Koie methods, 345-351
ode23 Tunction, 347-34%
afedd Tunction, 348
adel 13 function, 348
adeser Function, 350351
solving a system of ODEs, 3483500
Adaptive Simpson quadrature, 3158
Adaptive step-sive control, 346
Addition, 21
flops. naive Causs climination, 151
large numbers with simafl nombers, 67
of two malrices, 124%, 132
Anadytical (closed-form) solutions, 6, 280
& (And) logical comdition, 34
Approximate error, 61
Areal integral. 283
Arithmeetic., roomd-off ermor and, H5-07
Acithmetic mean. 200
Array operations. See Blemeni-byv-clement
operlions
Arrays, 18-20, 24, Ser also
MutrinMatrices
Arrow kevs, up (- ), 24
Assigniment, Bo-21
arrays, vectors, and matmees, 1820
colon operator, 2(--21
Finspeee command, 20, 273
forgspace comimand, 21
sealars, 16-18

Index

Associative propertics, 129130
Angmentation, of 8 matax, [3E 134

Backslash operator, 230, See alvo
Taft division
Back substitugion, 146, 148, 152, 162, 165
Backward difference approxdimations,
73,74
Hackward Ewler’s method, 358
Randed martrix, 129, See alve Tridiagonal
TELrx
Base-2 (hinary) number system, td
Pase-8 {octalh mumber system, 64
Rase- 10 (docimal ) number svstem, 63
“Best™ 0l criteria, 204205
[3ias, 59
Bimary (hase-2) pumber systen, 63
Rinary digits hits), 63, 64
Binary search, 262-263
Bisection, Si-96
binary search and, 263
error estimates {or, 42-93
false posilion vs,, Y7-99
M-files and, 45496
His, 63, 64
Rlunders, T8
Booles rule, 298, 339
Bracketing methods, 1100
hisection, See Bisection
delined, 83
false posilion, 96449
araphical methods, $3-85
ineremenial search, 87-90
initial geesses and, $5-90
Budli-in functions, 4a, 19, 25-26,
Seg alvp individual fincrions
(in Bolddtalics)
Burcher s fifth-order RE method,
33R-330

Caleulus, 2, 4. 280
Calls, of vlber Tunctions, 35-36
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Carrigge relurm. See ENTER key
[Cartinge tetum)
Canesian coordinates, 141
Caspe-sensitivaly
of function mames, 33
of variable names, |7
Centered finite difference approximations,
73,74
Characteristic polyromial, 366
Characteristic value, See Bigenvalues
Chemical engineering, conservation laws
for, 11-13
Cholesky decomposition, 167170
Cholesky Tactorization, 68

chal function, 169170

Circuils, comservalion laws for, 11-13

Civil engineering, conservation laws (or,
11-13

Clamped end condition, 271-272

Classical Tourth-order RE methods,
337-339, 341-343

Closed-Torm solulions, 6, 280

Closed Newton-Codes formiglas, 285

Coelficient matrix, 134

Coelficient of determination, 210

Coelficient of vamiation, 201

Colon aperator, 20-21

Cologs, specificrs for, 28

Columns of a matrix, 127

Column-sunm norm, 178

Column vectorisy, 18, 127, 134

Command window, 16, 32, 34

Commis, separating commands, 17

Commutative propertics, 129, 130

Companion matrix, 117

Complete pivoring, 153

Complex guantites, 17, 22

Comprosite imegration Tormulas,
JEE-200

Composite Simpson’s 13 rule,
294295, 305

Compaosite raperoidal rule, 2RE-290,
A0-302
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Coamputation eflTort, acouracy and, Y
Computer numbers, cound-off errors amd,
0H3-05
“ondition momber, mattices, 79181
Conservation laws, L 913, 125-126
Continuity condition, 264
Controd codes, 36
Convergence, 101, 105
digzonal dominance aml. 186
Corrector, son-sell-starting Heun
method, 353
Cowrrecton equation, 330
Correlation coeflicient, 210
Cramer™s rule, 142-145, 1492
Cubic sphines, 257, 266-272
emd conditions, 271-272, 275-277
piccewise cubic Hermite interpolition
{pelig, 275-277
Current balance, 1113
Curve fiting, 12
defined, 1981949
engingering practice and, 1951949
litting a straight line. See Fitting a
sirangh fine
poelynomial inlerpolation. See
Palynomial interpokition
splincs. See Splines
slalistics, See Staisics review

Data distribution, 202
Draty wnceriainty, errovs and, 74
Debug, Run, 32
Diecamal (hase- B munmber system, 63
DPecimal places. 1718
Digvasions, structured programming,
See Structured programming
DefMation, 372
Deprees of frecdon, 200201, 208,
223,227
Dependent variables, 3
Dieterminanis, Cramer’s rule and, 142-145
Devices, conservation laows for, 1113
Piggonal dominance, [86
Diagonal mairiz, 128
Differentiad cquations, 2, 4, 12, See
alse Owwdlinary differential
egpuations (ODEs)
Iigital compuiers, siredprecision
linits., 63
display parameter. 115
Divergence, 101, 105, 186
Divided ditferences. See Fintte divided
differences
Divided difference table, 244
Dyivision, 21
lefs, 21, 28n, 136, 170171, 230
i, 130
mudiiplication/division flops, 151
Prominant eigenvalue, 3649-372
Dot product of two vectors, 23

Dowble integral method, 3608303
Prrag coefficient, 4

Fcho ponting, 17
Tadit window, 16
Eigenvaloes, 179, 365-374
characteristic-valoe problems, 365
efg Tanction, 372-373
highest, power method, 370-371
mathematical background, 363366
physical background, 366-368
polynoemal method, 3683609
power method, 368-372
roofs function, 117118, 369
Eigenvector, 368-364, 373
efg Tanction, 372-373
Elecirical engineering, conservation laws
for, 11-13
Element-by-clement operations, 24
Element of a mainx, 127
Llimination of unknowns, 145-1448
Embedded RE methods, 347
End conditions. cubic splines, 271-272,
275
Encriy balance, 83
Engincening pracioe
curve litting, P9E-1949
lemear algebraic cquations, 125126
roots of eguations, 82-53
ENTER kev (carmiage meturn), 19
1o repeat calculations, 24
(ligual), 349
Erroris), S8-H}
accuracy and precision, S9-60
Mlunders, T8
data vneertainty and, 79
dlefined, 549-63
true erro, Gl
irue fractional relative error. G0-61
Crror analvsis
for Fuler’s method, 125-127
meatrix mversion, 170181
wd svsiem condition, 17181
error function, 3%
ciror messages, 23
estimales of
for iterative methods, 62-63, 103
mudiistep methods, 355-356
truncation errors. See
Truncation errors
lincar least-squares regression and.
20m-211
mode] ervors, 79
quantification of, 58-63
relative, 61
romd-ofl. See Round-off crrors
standard error of the estimate, 208
systerm condition and, FTo—-181
total numerical. T6-TH
trug error, ol

true fractional relative error, G0-61
truncation. See Truncation cirors
Estimates, error. See Erroris)
Fuclidean norm, 178179
Euter-Caonchy method, 323
Fuler's method, §
error analvsis for, 325-327
Eulode function, 327-320
explicit, 358-354
Sewal functiom, 49-50, 327
implicil, 334334
e ications of, 329-334
ODEs and, 323-329, 340-341
Explicit Boler's method, 358359
Explicit expression, in formulas, #3
Bxponential model, 281
Exponentiation, 21
External stimudi, 174
Extrapelation, polynomial interpolation
amld, 251-251
eve [unction, 133-134

Sactorial function, 44n
False position
bracketing methods and, 96-99
formula, 96
Jewval funciion, 49-50, 327
File, New, M-file, 32
Finish valuc, loops, 43
Fmite difference. 72, 76
approtimations, 76
Fanite divided difference
approximations, 7-8
of derivatives, 75-Th
lable, 244
Farst-omder approximation, 6%
First-order method, 327
First-onder splines, 260-261
Fitting a straight line, 19%6-220)
curve Titng, defined, P98-1494
limcar least-squares. See Lincar least-
SOUATCS TERTERsion
normal distribution. 202-203
stabistics review, 1U-203
Floating-point arithmeticfoperstions
(Flops), 150-153, 156, 166
Floating point numbers. 64-65
Sminsearch funciion, 231232
Force halance, 34, 11-13, 124
Forcing functions, 3, 174
Jor foop, 4344
Format codes, 36
Sformat function, 16
format long command, [7-18
format short command, 17-18
Sor structure, 43
Forward dilference approximations.
Forward elimination of unknowns, 146,
147144
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Fourth-order KK methods, 337-3349,
341-343
Soringf function, 36
Free-hody disgram, 2-3, 124
Functions
listed. See MATLAR functions
M-files, See M-files
naming, 13
that call piher fupctions, 35-36
Sfrero function, 113116

Crauss elimination, 140161, 194
CraessNaive [unction, 149-150
CraaessPived funciion, 154-155
as LU decomposition, 162-167
naive. See Naive Gaoss eliminalion
piviting, 153-155
small members of equitions and,

L41-146
Cramer’s rule, 142-145
determminants, 142145
araphical method, 141-142
Trigiag function, 157-158
Teadiagonal systems. 156158

Crawss-Legendne formoda, 312
three-point, 317
two-point, 314-316

Crauss gquadrature, 306, 310-314
Cranss-Legendre formola, 312, 314-317
higher-point formulas. 317-318
endetermined coefficents method,

312314

Criuss-Scide] methad, 183-189

comvergence and diagonal

dominance, 186
CraussSeidel function, 187, 188
relaxation, |87

Cieneral linear least sguanes, 227-229

Gitobal ruscation crror, 326

CiraphicsCraphical methods
graphics window, 16
with MATLARB, 26-28
oot location, 3385, 104-105
solving small numbers of equations,

I 1142
Ciravity, force of, 4
(Greater Than), 39
{Cireater than or equal o}, 34

Heat balance, 83
help conunand, 28-29
Heor's method, 329-333
without iteration, secomd-order RE, 336
Higher-order polvnommals
ill-conditioned syatems, 253-255
polynomial interpolation and, 233-255
splines va., 258
Higher-poimt formuelas, Gouss quadrature,
IT-31R

Highest cigenvalue, 370371
Hilhert matrix, 179-180
Histogram, 202
Homogeneous lincar algehraic
svslems, 3066
Hyperbolic tangent, 5
Hypolhesis testing, 198-199

Tdentity matrix, 128, 130131, 133, 135
if. .. else structure, 41-43
if .. elsedf structure, 41-43
i structure, 37-38
M-conditioned systems, 141-142,
176177
higher-order polynomials, 253-255
maltrices, 142
Inaginary numbers, 16
Implicit Buler’s method, 358354
[mplicit cxpression, in formelas, 83
Lnplicit solution of (35S, 357-355
Tmprecisiomn, 59
Inaccuracy. 54
Increment function, 323, 335
Inclentution, 47449
Independent variables, 3
Index variable, loops, 43
Imatial goesses
hracketing methods and, B5-4H)
defined, ¥5
incremental search and, 374
inlime function, 4950
Inner product (dot produoct)
round-off error and, 67
of two vectors, 23
inpet function, 34-35
leputfoutput in programiming, 34-37
Imtegration, 12, See also Numerical
imegration formulas
delined, 280-281
in enginceringfscicnoe, 281-243
Imteractive M-file function. 35
Ieterpolation, 98, 236-234
fnferpd Tunction, 274-277
lincar. See Lincar interpolation
polynomial. See Polynomial
interpolation
table lookop, 262-263
Inwverse
mverse interpolation, 114, 250-251
inverse quadratic imerpolation, 114
fry [umction, 1373
of malrices, 130-131, 133, 136
IerationdIerative methods, 61
errar estimates for, 62-63, 13
for systems of cquations, 1831495
Ciauss-Seidel method, See Causs-
Seadel method
Newion-Raphson method, 191194
nonlinear syslems, 189194
stcressive substiintion, 1H-1491

Jacobian, of the system, 192
Jacobian mairix, 193194
Jucobi iteration, 185186

Kirchholl"s Fawes, 83
Knots, 261, 271

Lagrange function, 249
Lagranee interpolating polynomial,
247250
Large computations, round-ofl ermors
and, b
Least-sguares 01, stranght lines, 205-207
Least-squares regression, 195, 199
Left division, 21, 21n, 136, 170-171, 230
< ilLess Than), 39
<= {Less than or equal to), 348
Linear algebraic equations, 12
delined, 125126
engineering practice and, 125126
matrices and, 123-139
matrix algebra overview, 126-135
mattrix forme representation, 134135
it maeipalation, 131-134
malrix nodation, 127129
matrs operating rules, 120134
solving with MATLAR, 135137
Linear convergence. 103
Linear interpolation, 236, 274-277
false position and, S0
Mewton's inlerpolating polvnormials,
230-24
splines, 262-263
Lincatization. of nonlinear relationships,
211-215
Linear least-sguanes regression,
203215
Shest” i ertena, 204205
commputer applications, 215-2148
crror, quantification of, 200211
seneral comments on. 215
general linear least squares, 227-2249
least-sguares (1 of & siraight ling,
205-2007
lincarization of nonlinear relationships,
211-2153
lisregr function, 215-217
muliiple linear regression, 225-227
podyfit function, 217-218
polyval function, 217-218
Linear regression, delined, 227
Linear splines, 254%-263
table lookup, 262-263
Line types, specifiers, 28
lisregr function, 215-217
finspace command, 21, 273
Lobatto quadrature, 318
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Local error Sormat short [unction, 18 matrix condition numbser, 179151

Heun method, 332
runcation error. 333
wilh Faler's methaod, 325-327
log function, 25
Logical conditions, 38-40
fogspace command, 21
fonkfer conmand, 28
Loops, See Structured programming
Lower trisngobar matris, 129
LU decomposition, 160-171
Cholesky decomposition, 167-170
chel function. 169170
Ganss elimination as, 162-167
left division, [70-171
T Tunetion, 166167

Machine epsifon, 65
Machines, conservation laws foe, 11-13
Maclarin series expansion, 300, 55, 62
Wain diagonal, of o mamix. 128
Mass balance, E1-13
Mathematical modeling, 1-9
defined. 3
Mathematical eperations, 28-24
MathWorks, Inc., 29, 252
mathworks, com, 29
MATLARL, Sn. See atvo MATLABR
funetions; M-files; Programimning
with MATLAB
assigmiment, See Assigrment
built-in functions, 25-26
command window, 16
defined, 15
clit window, 16
fundamentals, 15-30
praphics window, 16
eraphics with, 2628
for linear algebraic eguations,
135157
mathematical operations, 20-24
M-files. See M-liles
oither Fesources, 28-249
tor polynomial manipalation, 1151149
primary windows, 16
programming with, See Programming
with MATLAR
MATLAR functions. See afso MATLAB;
M-files
bisection function, 95
ehrol function, 169170
cond [unction, 180~ 181, 238
el funetion, 372-373
error function, 3%
Eulodle function, 327-329
eve lunction, 133134
Sactorial function, 44n
Sewal tunction, 49-5{k, 327
Sutfnsearch function, 23§-232
Sormat long function. 17

Sprintf funciion, 36

Szere function, 113-116

CarussMaive function, 149150

GaussPivor lunction, 154155

GanssSeidel Tanction, 187, 188

incsearch tunction, i8

irline Tanction, 49-50

imprt function, 34-35

intterpd function, 274-277

inv function, 133

Lagrange [unction, 249

Iinregr function, 215-217

log function, 25

e function, 166-167

atean function, 51

Newting {unction, 246-247

sewtraph function, [10-11§

for nonstfl systems, 347-351

morn Function, JR0-181

ade ] 3% [unction, 360

ade2? function, 347-343

ede2ds function, 3640

ode 23t Tanction, 260

ode2 3th {unction, 3601

aded5 function, 348, 361

ode 13 Tanction, 348

adeset Tunciion, 350-351

opfimset function. 115-116, 231

Plon Tanction, 26-28, 344

polyfit function, 217-218, 230, 234,
253-254

polyval function, 217-218, 2349,
253254

grieed Panction, 318-319

gruadi funcrion, 3E8-319

realmax {unction, 6463

redlntin function, 65

Romberg function, 311

rinids Tunction, HT-119, 169

semilogy function, 30

sigar Function, 41, 322, 322n

size function, 134

spline function, 257, 272-274

for stift (s, 362363

for suifl systems, 360-361

trap function, 290-291

Frapuseq tunction, 299300

trapz Tunction, 3001

Tridiag funciion, 157-158

ispan Tunction, 348

Wit Tunciion, 19

whos function, 19

zerow function, 20

Matrix/Matrices, 18-20

of coelficients, 134

condition number, 179181

form represenation, 134-135

inversefinversion, 172-181
calcalating, 172-174
ifl-comditioned systems, 176177

s in MATLAR, 180181
stimulus-response compulations,
174176
vector and matrix norms, 177-179
linear algebraic equations and, 123-139
manipulation of, 131-134
mairix algebra overview, [26-135
matrix division, 130
iari-mmaira s muliplication, 23
matrix norms, 177181
ki otalion, 127-120
operating rufes, 129134
Maximum error, misnmizing, 204, 205
Maximum likelihood principle, 207-208
Moean, 51, 202, 208, 281
Mechanical engineering, conservation laws
for, 11-13
Memory locations, 16
e file extension, 32
M-files, 32-34. See atso MATLAR
funetions
bisection and, 95-96
bungee jumper velocity, 52-55
function liles, 32-34
I exkension, 32
passing functions to, 49-52
seripl les, 32
Midpoint method, 333-334
Newton-Coles apen infegration
formulas, 301
second-order RK metheds, 336
Micdtest loop, 46
Minimnax criterion, 205
Minimization, 231-232
Mixed operations, with scalars, 24
Muodel crrors, 79
Muodified secant method, 112-113
Muoler, Cleve, 252
Multiple-application imegration
fornmtas, 285290
Multiple infegrals, 301-303
Multiple lincar regression, 225-227
Muligple roots, 85
Multgplication, 21
of magrices, 129130, 132-133
matrix-matrix, 23
Multiplicationfdivision ops, 151
Multistep methods, 323
adaptive methods and sGfT systems,
351356
crror calinates, 355356
non-sell-starting Heun method, 352354

Maive Gaunss elimination, 146—-153
back substitution, 1dé, 148, 152
forward elimination of unknowns, 146,
147148
CrarmssNedve function, 149-150
operation counting, 150153
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Matural cubic splines, 270, 271
Natural end condition, 271
Nearest neighhor interpolation, 274,
275-277
Negation., 21
Nested stractures, 47-449
Mesting and indentation, 47-49
mewtinf function, 246-247
Newlon-Cotes [ormulas, 283-285,
206, 298
open integration, 330
Newton lincar-interpolation fommula,
239-240
Newton-Raphson method. 106111
aewtraph Tunction, 110111
Tor rorlinear systems, [9E-194
slowly converging function with,
1071160
Newton's inferpolating polynomials,
230247
eeneral foom, 243-245
lingar interpolation, 239-241
newting function, 2406247
quadsatic inepelation, 241-243
Newlon's Second Law, 1, 3,9
sewdraph Tunction, 110111
MNonhomozeneous syslems, 366
Nonlinear regression, 231-232
Nonlinesr systems, iterative methods for
Sew lteration/lerative methods
Mon-self-starting Heun method, 352-354
NonstlT systems, MATLAD lenciions
for, 347351
Normal disteibation, 202202
Normalization, 147
Norms
column-sum, 1T
delined. 177
Euclidean, 178179
Frobenius, 178
in MATLABR, 180181
mateix, [77-181
rowe-sum, 178
spectral, 179
veelor and matrix, 177179
~ {Matl, 39
“MNot-g-Knot” end conditon, 271272,
275277
== { Mot egquai), 39
rth-omder Taylor serics expansion, 70
MNumber systems, 6364
Numerical differentiation. See
Truncation crrors
Numerical integration Formulas, 279-304,
See alve Numerical integration
of Tusctions
Boole's rule, 298, 339
conmposite Simpson's 13 rule,
2042495, 305
ntegration
delined. 280-281

in enginceringfscicnce, 281283
with unequal segmenis, 298300
midpoint method, 301
muliiple integrals, 300303
Newton-Cotes [onmulas, 283- 255,
296, 298
open methads, 300-3180
Simpson's 13 rule, 292-295, 208,
301302
Simpson's 38 rule, 296-297, 298
traperoidal rule, 285-291, 298
single spphication of, 286288
frap {unction, 2902491
Trapuneqg function, 299-300
trapz function, 300
wncgual segaments, inegration witly,
2OH- 3N
Numerical imegration of functions,
(5-320). See alse Mumerical
mtegration formulas
adaptive quadrature. 306, 318319
Crass quadrature, See Gauss
guadralre
higher-order corrections, 28
gquad function, 3183149
el function, 3153149
Richardson’s extrapolation, 303,
06308
Romberg integration. 3405, 306-310
Numierical methods, 1
covered in this book, 12, 13
delined, 6-8
MATLABR implementation of, 15,
See alve MATLAB
surmmary, 12
Numierical oplimization, 135, 231

Octal (base-B) number system, 64

e 5% Tunction, 360

ode2 3 funclion, 347-348

aded 3x Tunction. 360

ade 3¢ function, 364)

e 23l functiom, 3600

odedd [unclion, 348, 361

ade T13 function, 3458

ODEs. See Ordinary differential

copuations (CIDEs)

odeset function, 350-351

artes function. 19-20)

CUme-step methods, 323

Ohpen integration, Newlon-Cores,

2HS, 301

Open methods, 100-122
delined, 83
fzera function, 113-116
inverse quadratic inlerpolation. 114
Newton-Raphson, 106-111
mewtraph function, TH-111
numnerical integeation, 300-301
optimser lunctiion, 115186, 231

polynomial ranipulation, poot
determination, 1181149
polynomials, F17-114%
ronts Function For polyromials,
L7119
secam methods, TH-113, 114
simple fixed-point iteration, FO2-F0G
slowly converging funcrion with
Newton-Raphson, 107110
two-curve method, 1053106
OIperating systems. nob case sensitive, 33
Oiperation counting, paive Guauss
climination. 150153
agtimser function, 115-116, 231
Chrdinary differential eguations (O Es)
adaptive methads/sull syvstems, See
Adlaptive methods and 0l systems
adaptive Runge-Kutta methiods,
A45-351
nitial value problems, 321-344
Buler's method, 323-329
ertar anglysis for, 325-327
Eulode lunction, 327-329
Jeval function, 327
madifications of, 329-334
Heun's mehod, 329-333
midpoint method, 333-334
Ralston™s method, 336-337
Runge-Kutts methods, See Runge-
Kutra methaodds
sign function, 322, 322n
signum [unclion, 322, 322n
svstems of equations, 339343
Buler's meethod, 340-141
Runge-kuna methods, 341-343
PO} logical condition, 39
Crseillations, polvnomial imerpolation and.
253-258
Chuter praduct of two vectors, 23
Overdetermined systems, 135, 230
Overflow, 65
Orverrelaxation, 187

Parameters. 3, 175

Parentheses, overriding priority order,
22,39

Partial pivoting, 155154

Passing functions (o M-liles, 4952

pehip option, 275-277

Per-step truncation ermor, 355356

Physical background, cigenvaloes,
366-368

P, 17

Piecewise interpolation, 272-277

cubic Hermile dpchip), 275-277

Pivol element, 147

Pivol equation, 147

Pivoting, 153155

Place value, 64

plot function, 26-28, 276277, 340
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Point-slope method, 323
podvf Tunciion, 217-218, 230, 2349,
253254
Polynonmal, 67 1871149
Polynomial coellicients, 237234
Palynomial interpolation, 235-256
basics, 236-2349
extrapoelation, 251-251
higher-order, 253-255
inverse, 250-251
Lagrange function, 244
Lagrange miterpolating polynomeal.
247-250
Mewion's, See Newton's interpolating
polynoemias
osciblations, 233255
polyfit function, 217-218, 230, 2349,
253-254
polynomiad cocflicients, determining,
23723
polyval function, 217-218, 2349,
253-254
Kunge's function, 253253
Polynomial method, for cigenvaloes,
368-369
Palvnomial regression, 211, 221225,
228229
podyval function, 217-218, 239, 253-254
Positional notation, 64
Posiest foop, 46
Power equation, 211, 212-215, 227
Power method, for cigenvalues,
3on-372
Preallocation of memory, loops, 45
Precision, [7-18, 59-60}
limits of digital compaters, 63
round-ofl errors and, 64
Prodefined variables, 17
Predictor, non-scll-starting Heun
methiodd, 353
Predictor eguation, 330
Pretest loop, 46
Primary windows, MATLAR, 16
Principal diagomal, of o mairix, 128
Priority order, 21-22, 39
Programming with MATT.AR, 31-57
input-ougput, 34-37
M-files, See M-files
nesting and indentation, 47-449
passing funetions o M-files, 49-52
Sfewal tunction, £49-5{
feline Tunction, 49-50
structured programming. See Structuned
POErATIInG
Propagated truncation error, 325-327
Proposticaality, 175, 176

R factorization, 1710, 230
geead Tumction, 318319
gread! function, 318-319

Quadratic convergence, 107
Quadratic mierpolation, Newion's
palynomials, 241-243
Orsaclratic splines, 263-266
Quadrature, 280 See aloo Numerical
integration formuokas
Quantilication, of coror, 5%-63

Ralston's method, 336337
Range of representation, round-off ermors
aml, 6465
Reactors, conservation laws for, 11-13
realnax Tunction, 6463
realmin function, 65
Regression Bine, spread and, 208
Relational operators, 38-349
Relative error, 6
Relaxation, Ganss-seidel method, 147
Residual ervor, 2082110
Residuals, 204-205
Resolution, of floating-point arithmetic, 65
Response, of sysiems, 174
Richardson's extrapolation, 305, 3308
Right-hand-side vector, 136
RE methods, See Runge-Kutta methaods
Raomberg integration, 303, 306-310
Raoots of equations, §2
bracketing methods. See Bracketing
meethoxls
enginecring practice and, §2-83
open methods, See Open methods
roots defined, 82
e (unction, F17-119, 369
Rosenbrock formuli, 364
Raound-ofl crrors, 6367
arithmetic manipulations and, 65-67
computer number representaions,
6365
with Euler’s methad, 325-327
inner products, 67
large compulalions, 66
large numbers added 1o sinatl
munmbers, 67
precision and, 64
range of representation and, 64-63%
smearing, 67
subtractive cancellation, 66, 76
truncation crrors vs., 7o-T77
Raoww ol o neagrix, 127
Raow-sum nonmn, 178
Raow vectors, 18, 127
Runge-Kutta methods, 323, 329,
335334, 36D
Butcher's filth-order method, 338339
chassical Toarth-order method.,
337-3349, 341543
Heun methad, withow ileration, 336
midpoint method, 336
Ralston's method, 136-337
RE-Fehlberg, 347

seeomd-order, 335-337
for systems of equations, 341-343
Runge's function, 2533235

Satwration-growih-rate equation, 211-212
Scalars, 1618, 22, 24
Script files, 32
Secant methods, 111-113, 114
Second-order polynoemial, 221-223
Second-order Runge-Kutta methods,
335337
Sequential perlormance of instructions, 37
Sequential search, 262
sign Tanction, 322, 322n
Sigmum function, 322, 322n
Simple fixed-point feration, 102106
Simple statistics, 200-202
Simpson’s 103 rule, 292-2495, 298,
08302, 305
Simpson's 308 ruke, 2096297, 298
Simultaneous equations, polynomial
coelficients with, 237-238
Single application, of trapeeoidal rule,
286288
Singuolar systems, [41
Singular value decomposition, 230
size Tunetion, 134
Sive limits, of digital computers, 63
Slowly converging function, with Newion-
Raphson, 107110
Srmad] numbers of equations, graphical
methods (o, 141142
Smearing, round-ofT errors and, 67
Spectral norm, 179
spline function, 257, 272-274
Splines, 257-274
cubic, 257, 266-272
end conditions, 271-272, 275277
nabaral, 270, 271
defined, 259
highes-order polynomials vs., 258
imterp! function, 274-277
knots aml, 261
linear, 259-263
lirst-ordes, 260261
table fookup, 262-263
pecewise inferpolation, 272-277
quadratic, 263266
spline function, 257, 272-274
Spread
aroued the mean, 208
around the regression ling, 208
degree of, 200
Souare matrix, 1238
Standard deviation, 200, 202
Standard error of the estimate, 208
Surt value, loops, 43
Statistics review, 199-203
nawimal disteibation, 202-203
simple statistics, 200-202
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Steady-state calculation, 10 Two-curve method, 103106
Step halving, 347 TableLookBin, 263 Two-poin Gauss-Legendre formuola,

Step value, loops, 43
StilTnessfsill systems, 356-361
explicit Buler's method, 358359
implicie Buler's method, 358350
adel 35 function, 360
onde 235 Tumction, 360
ade2 3t function, 3640
ade2 b function, 360
aded3 funclion, 361
Stimuhus-response compaiations, [ 74-176
Slopping criterion., A1-62
Structured programming, 3746
decisions, 37-43
error lunclion, 38
if. .. efse structure, 4143
if . .. elseif struciure, 41-43
if structure, 37-38
logical comditions, 3839
prionily order, 3%
telational aperators, 38-39
truth tables, 34
loogs., 37, 4346
o compute factorials, 44, 44n
mdex variable, 43
Jar fivap, 43
midiest loop, 46
postiest loop, 46
preallocation of memory, 45
pretest loop, 46
veclorzation, 4445
while . . . break, 46, 34
whiile loop, 43
while structure, 4546
Structures, comservation laws for, 11-13
Subtraction, 21, 124, 132
Subtractive cancellation, 66, 76
Successive overrclaxation (SOR), 187
Successave substitution, 1191
Sum of residuals, 204
Sum of the squares. 202
Superposition, 175, 176
Symbols, specifiers for, 28
Symmelric matrix, 128
Swslemis)
of equations, initial value problems,
1309343
inferactions. 175
response of, 174
state of, 174

TableLook Tunciion, 262
Table lookup, hnear splines, 262-263
Taylor series, 67-72, 326
Tavior theorem, 67
Terminal velovity, 6, 10
Three-point Gauss-1egendre
Toemuly, 317
Time-varishle {transient) compuotations,
G-12
todx parameter, 1135
Top-clown design, 47
Total numerical error, 76-78
Trade-ofls, round-off ermor vs.
truncation, 77
Transient computagions, 9-12
Transpose, of a mairix, 131, 132
Traperoidal rufe, 285-201, 208
single application, 286- 288
with unequal segiments, 299
trag funciion, 290241
TropUneq Tunction, 29930
trapy funciion, 300
Trend anabysis, 198
Trial and error, 82
Triding Tunction, 157-158
Tradizgonal matrix, 129
Tridisgonal systems, 156-158
True error, 661, 332
True fractiomal relative error, 6l-61
True value. 6, 355
Truncation errors, 67-76
with Euler’s method, 325327
mummerical dilTerentiation aml, 72-76
backward difference
approximations, 73, 74
centered difference
approsimations, 73,74
centered finite difference
approximations, 73, 74
{inite difference approximations,
73,74, 76
finite-divided-ditference of
derivatives, 75-76
forward dilTerence
approimations, 72-74
round-off ermors vs., 7677
Taylor series, 67-72
Truth tables, 39
fapon parameter, 348

A4-316

Uncertainiy, 59
Unconditionally stable method, 358
Underdeiermined systems, |35, 136
Underflow, 65
Underrelasation, 187
Undetermined coctficients method,
312-114
Unegual segments
imtegration with, 298300
traperoidal rule with, 209
Uniknowns
column vector of, 134
climination of, 145-148
Up i b armow key, 24
Upper idengular matrix, 128
User-defined functions, 32

WVandermemde matrices, 238
vin der Pol eguation 360-361
Wartahle mames
assigpment of. See Assignment
case-sensitivity of, 17
Wariance, 200-201
Vector, 18-20
Yector and matrix norms, 177-179
Yectorization, 44-45
Vector-malrix calcubations, 22-24
Woltage, §1-13
Wolume inteeral, 283

while . . . freak loops, 46, 262
while . . . break structure, 46, 34
while lvog, 43, 45416

whife structure, 43, 45-46

whao command. 19

whos command, 19

wwwe mathworks, com, 29

Jero-order approximation, 68
Jeros, ol equations, B2
zevos comimand, 19260
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