
5
Roots of Equations:
Bracketing Methods

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with bracketing methods
for finding the root of a single nonlinear equation. Specific objectives and topics
covered are

• Understanding what roots problem are and where they occur in engineering
and science.

• Knowing how to determine a root graphically.
• Understanding the incremental search method and its shortcomings.
• Knowing how to solve a roots problem with the bisection method.
• Knowing how to estimate the error of bisection and why it differs from error

estimates for other types of root location algorithms.
• Understanding false position and how it differs from bisection.

YOU’VE GOT A PROBLEM

Medical studies have established that a bungee jumper’s chances of sustaining a sig-
nificant vertebrae injury increase significantly if the free-fall velocity exceeds
36 m/s after 4 s of free fall. Your boss at the bungee-jumping company wants you

to determine the mass at which this criterion is exceeded given a drag coefficient of
0.25 kg/m.

You know from your previous studies that the following analytical solution can be
used to predict fall velocity as a function of time:

v(t) =
√

gm

cd
tanh

(√
gcd

m
t

)
(5.1)

Try as you might, you cannot manipulate this equation to explicitly solve for m—that is,
you cannot isolate the mass on the left side of the equation.

81

cha92657_ch05.qxd 3/15/04 5:27 PM Page 81

82 ROOTS OF EQUATIONS: BRACKETING METHODS

An alternative way of looking at the problem involves subtracting v(t) from both sides
to give a new function:

f (m) =
√

gm

cd
tanh

(√
gcd

m
t

)
− v(t) (5.2)

Now we can see that the answer to the problem is the value of m that makes the function
equal to zero. Hence, we call this a “roots” problem. This chapter will introduce you to how
the computer is used as a tool to obtain such solutions.

5.1 INTRODUCTION AND BACKGROUND

5.1.1 What Are Roots?

Years ago, you learned to use the quadratic formula

x = −b ± √
b2 − 4ac

2a
(5.3)

to solve

f (x) = ax2 + bx + c = 0 (5.4)

The values calculated with Eq. (5.3) are called the “roots” of Eq. (5.4). They represent the
values of x that make Eq. (5.4) equal to zero. For this reason, roots are sometimes called the
zeros of the equation.

Although the quadratic formula is handy for solving Eq. (5.4), there are many other
functions for which the root cannot be determined so easily. Before the advent of digital
computers, there were a number of ways to solve for the roots of such equations. For some
cases, the roots could be obtained by direct methods, as with Eq. (5.3). Although there were
equations like this that could be solved directly, there were many more that could not. In
such instances, the only alternative is an approximate solution technique.

One method to obtain an approximate solution is to plot the function and determine
where it crosses the x axis. This point, which represents the x value for which f (x) = 0, is
the root. Although graphical methods are useful for obtaining rough estimates of roots, they
are limited because of their lack of precision. An alternative approach is to use trial and
error. This “technique” consists of guessing a value of x and evaluating whether f (x) is
zero. If not (as is almost always the case), another guess is made, and f (x) is again evalu-
ated to determine whether the new value provides a better estimate of the root. The process
is repeated until a guess results in an f (x) that is close to zero.

Such haphazard methods are obviously inefficient and inadequate for the requirements
of engineering practice. Numerical methods represent alternatives that are also approxi-
mate but employ systematic strategies to home in on the true root. As elaborated in the
following pages, the combination of these systematic methods and computers makes the
solution of most applied roots-of-equations problems a simple and efficient task.

5.1.2 Roots of Equations and Engineering Practice

Although they arise in other problem contexts, roots of equations frequently occur in the
area of engineering design. Table 5.1 lists a number of fundamental principles that are rou-
tinely used in design work. As introduced in Chap. 1, mathematical equations or models

cha92657_ch05.qxd 3/15/04 5:27 PM Page 82

5.2 GRAPHICAL METHODS 83

derived from these principles are employed to predict dependent variables as a function of
independent variables, forcing functions, and parameters. Note that in each case, the de-
pendent variables reflect the state or performance of the system, whereas the parameters
represent its properties or composition.

An example of such a model is the equation for the bungee jumper’s velocity. If the pa-
rameters are known, Eq. (5.1) can be used to predict the jumper’s velocity. Such computa-
tions can be performed directly because v is expressed explicitly as a function of the model
parameters. That is, it is isolated on one side of the equal sign.

However, as posed at the start of the chapter, suppose that we had to determine the
mass for a jumper with a given drag coefficient to attain a prescribed velocity in a set time
period. Although Eq. (5.1) provides a mathematical representation of the interrelationship
among the model variables and parameters, it cannot be solved explicitly for mass. In such
cases, m is said to be implicit.

This represents a real dilemma, because many engineering design problems involve
specifying the properties or composition of a system (as represented by its parameters) to
ensure that it performs in a desired manner (as represented by its variables). Thus, these
problems often require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (5.1) by
subtracting the dependent variable v from both sides of the equation to give Eq. (5.2). The
value of m that makes f (m) = 0 is, therefore, the root of the equation. This value also rep-
resents the mass that solves the design problem.

The following pages deal with a variety of numerical and graphical methods for deter-
mining roots of relationships such as Eq. (5.2). These techniques can be applied to many
other problems confronted routinely in engineering and science.

5.2 GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f (x) = 0 is to make
a plot of the function and observe where it crosses the x axis. This point, which represents
the x value for which f (x) = 0, provides a rough approximation of the root.

TABLE 5.1 Fundamental principles used in engineering design problems.

Fundamental Dependent Independent
Principle Variable Variable Parameters

Heat balance Temperature Time and position Thermal properties of material, system geometry
Mass balance Concentration or quantity Time and position Chemical behavior of material, mass transfer,

of mass system geometry
Force balance Magnitude and direction Time and position Strength of material, structural properties, system

of forces geometry
Energy balance Changes in kinetic and Time and position Thermal properties, mass of material, system

potential energy geometry
Newton’s laws of Acceleration, velocity, Time and position Mass of material, system geometry, dissipative
motion or location parameters
Kirchhoff’s laws Currents and voltages Time Electrical properties (resistance, capacitance,

inductance)

cha92657_ch05.qxd 3/15/04 5:27 PM Page 83

84 ROOTS OF EQUATIONS: BRACKETING METHODS

EXAMPLE 5.1 The Graphical Approach

Problem Statement. Use the graphical approach to determine the mass of the bungee
jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of free
fall. Note: The acceleration of gravity is 9.81 m/s2.

Solution. The following MATLAB session sets up a plot of Eq. (5.2) versus mass:

>> cd = 0.25; g = 9.81; v = 36; t = 4;
>> mp = linspace(50,200);
>> fp = sqrt(g*mp/cd).*tanh(sqrt(g*cd./mp)*t)-v;
>> plot(mp,fp),grid

The function crosses the m axis between 140 and 150 kg. Visual inspection of the plot
provides a rough estimate of the root of 145 kg (about 320 lb). The validity of the graphi-
cal estimate can be checked by substituting it into Eq. (5.2) to yield

>> sqrt(g*145/cd)*tanh(sqrt(g*cd/145)*t)-v

ans =
0.0456

which is close to zero. It can also be checked by substituting it into Eq. (5.1) along with the
parameter values from this example to give

>> sqrt(g*145/cd)*tanh(sqrt(g*cd/145)*t)

ans =
36.0456

which is close to the desired fall velocity of 36 m/s.

Graphical techniques are of limited practical value because they are not very precise.
However, graphical methods can be utilized to obtain rough estimates of roots. These

Root

�5
50 100 150 200

�4

�3

�2

�1

0

1

cha92657_ch05.qxd 3/15/04 5:27 PM Page 84

5.3 BRACKETING METHODS AND INITIAL GUESSES 85

estimates can be employed as starting guesses for numerical methods discussed in this
chapter.

Aside from providing rough estimates of the root, graphical interpretations are useful
for understanding the properties of the functions and anticipating the pitfalls of the numer-
ical methods. For example, Fig. 5.1 shows a number of ways in which roots can occur (or
be absent) in an interval prescribed by a lower bound xl and an upper bound xu . Figure 5.1b
depicts the case where a single root is bracketed by negative and positive values of f (x).
However, Fig. 5.1d, where f (xl) and f (xu) are also on opposite sides of the x axis, shows
three roots occurring within the interval. In general, if f (xl) and f (xu) have opposite signs,
there are an odd number of roots in the interval. As indicated by Fig. 5.1a and c, if f (xl)

and f (xu) have the same sign, there are either no roots or an even number of roots between
the values.

Although these generalizations are usually true, there are cases where they do not hold.
For example, functions that are tangential to the x axis (Fig. 5.2a) and discontinuous func-
tions (Fig. 5.2b) can violate these principles. An example of a function that is tangential to
the axis is the cubic equation f (x) = (x − 2)(x − 2)(x − 4). Notice that x = 2 makes two
terms in this polynomial equal to zero. Mathematically, x = 2 is called a multiple root.
Although they are beyond the scope of this book, there are special techniques that are
expressly designed to locate multiple roots (Chapra and Canale, 2002).

The existence of cases of the type depicted in Fig. 5.2 makes it difficult to develop
foolproof computer algorithms guaranteed to locate all the roots in an interval. However,
when used in conjunction with graphical approaches, the methods described in the follow-
ing sections are extremely useful for solving many problems confronted routinely by engi-
neers, scientists, and applied mathematicians.

5.3 BRACKETING METHODS AND INITIAL GUESSES

If you had a roots problem in the days before computing, you’d often be told to use “trial
and error” to come up with the root. That is, you’d repeatedly make guesses until the func-
tion was sufficiently close to zero. The process was greatly facilitated by the advent of soft-
ware tools such as spreadsheets. By allowing you to make many guesses rapidly, such tools
can actually make the trial-and-error approach attractive for some problems.

But, for many other problems, it is preferable to have methods that come up with the
correct answer automatically. Interestingly, as with trial and error, these approaches require
an initial “guess” to get started. Then they systematically home in on the root in an itera-
tive fashion.

The two major classes of methods available are distinguished by the type of initial
guess. They are

• Bracketing methods. As the name implies, these are based on two initial guesses that
“bracket” the root—that is, are on either side of the root.

• Open methods. These methods can involve one or more initial guesses, but there is no
need for them to bracket the root.

For well-posed problems, the bracketing methods always work but converge slowly
(i.e., they typically take more iterations to home in on the answer). In contrast, the open
methods do not always work (i.e., they can diverge), but when they do they usually con-
verge quicker.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 85

86

(a)

(c)

(d)

f (x)

x

x

x

xl xu

(b)

x

f (x)

f (x)

f (x)

FIGURE 5.1
Illustration of a number of general ways that a root may
occur in an interval prescribed by a lower bound xl and
an upper bound xu. Parts (a) and (c) indicate that if both
f (xl) and f (xu) have the same sign, either there will be
no roots or there will be an even number of roots within
the interval. Parts (b) and (d) indicate that if the function
has different signs at the end points, there will be an odd
number of roots in the interval.

(a)

(b)

f (x)

f (x)

x

x

xl xu

FIGURE 5.2
Illustration of some exceptions to the general cases
depicted in Fig. 5.1. (a) Multiple roots that occur when
the function is tangential to the x axis. For this case,
although the end points are of opposite signs, there are
an even number of axis interceptions for the interval.
(b) Discontinuous functions where end points of opposite
sign bracket an even number of roots. Special strategies
are required for determining the roots for these cases.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 86

5.3 BRACKETING METHODS AND INITIAL GUESSES 87

In both cases, initial guesses are required. These may naturally arise from the physical
context you are analyzing. However, in other cases, good initial guesses may not be obvi-
ous. In such cases, automated approaches to obtain guesses would be useful. The following
section describes one such approach, the incremental search.

5.3.1 Incremental Search

When applying the graphical technique in Example 5.1, you observed that f (x) changed
sign on opposite sides of the root. In general, if f (x) is real and continuous in the interval
from xl to xu and f (xl) and f (xu) have opposite signs, that is,

f (xl) f (xu) < 0

then there is at least one real root between xl and xu .
Incremental search methods capitalize on this observation by locating an interval

where the function changes sign. A potential problem with an incremental search is the
choice of the increment length. If the length is too small, the search can be very time con-
suming. On the other hand, if the length is too great, there is a possibility that closely
spaced roots might be missed (Fig. 5.3). The problem is compounded by the possible exis-
tence of multiple roots.

An M-file can be developed1 that implements an incremental search to locate the roots
of a function func within the range from xmin to xmax (Fig. 5.4). An optional argument
ns allows the user to specify the number of intervals within the range. If ns is omitted, it
is automatically set to 50. Afor loop is used to step through each interval. In the event that
a sign change occurs, the upper and low bounds are stored in an array xb.

x6x0 x1 x2 x3 x4 x5

f (x)

x

FIGURE 5.3
Cases where roots could be missed because the incremental length of the search procedure is
too large. Note that the last root on the right is multiple and would be missed regardless of the
increment length.

1 This function is a modified version of an M-file originally presented by Recktenwald (2000).

cha92657_ch05.qxd 3/15/04 5:27 PM Page 87

88 ROOTS OF EQUATIONS: BRACKETING METHODS

function xb = incsearch(func,xmin,xmax,ns)
% incsearch(func,xmin,xmax,ns):
% finds brackets of x that contain sign changes of
% a function on an interval
% input:
% func = name of function
% xmin, xmax = endpoints of interval
% ns = (optional) number of subintervals along x
% used to search for brackets
% output:
% xb(k,1) is the lower bound of the kth sign change
% xb(k,2) is the upper bound of the kth sign change
% If no brackets found, xb = [].

if nargin < 4, ns = 50; end %if ns blank set to 50

% Incremental search
x = linspace(xmin,xmax,ns);
f = feval(func,x);
nb = 0; xb = []; %xb is null unless sign change detected
for k = 1:length(x)-1
 if sign(f(k)) ~= sign(f(k+1)) %check for sign change
 nb = nb + 1;
 xb(nb,1) = x(k);
 xb(nb,2) = x(k+1);
 end
end

if isempty(xb) %display that no brackets were found
 disp('no brackets found')
 disp('check interval or increase ns')
else
 disp('number of brackets:') %display number of brackets
 disp(nb)
end

FIGURE 5.4
An M-file to implement an incremental search.

EXAMPLE 5.2 Incremental Search

Problem Statement. Use the M-file incsearch (Fig. 5.4) to identify brackets within the
interval [3, 6] for the function:

f (x) = sin(10x) + cos(3x)

cha92657_ch05.qxd 3/15/04 5:27 PM Page 88

5.3 BRACKETING METHODS AND INITIAL GUESSES 89

Solution. The MATLAB session using the default number of intervals (50) is

>> incsearch(inline('sin(10*x)+cos(3*x)'),3,6)
number of possible roots:

5

ans =

3.2449 3.3061
3.3061 3.3673
3.7347 3.7959
4.6531 4.7143
5.6327 5.6939

A plot of the function along with the root locations is shown here.

Although five sign changes are detected, because the subintervals are too wide, the func-
tion misses possible roots at x ∼= 4.25 and 5.2. These possible roots look like they might be
double roots. However, by using the zoom in tool, it is clear that each represents two real
roots that are very close together. The function can be run again with more subintervals
with the result that all nine sign changes are located

>> incsearch(inline('sin(10*x)+cos(3*x)'),3,6,100)

number of possible roots:
9

ans =
3.2424 3.2727
3.3636 3.3939
3.7273 3.7576
4.2121 4.2424
4.2424 4.2727
4.6970 4.7273

3
�2

�1

0

1

2

3.5 4 4.5 5 5.5 6

cha92657_ch05.qxd 3/15/04 5:27 PM Page 89

90 ROOTS OF EQUATIONS: BRACKETING METHODS

5.1515 5.1818
5.1818 5.2121
5.6667 5.6970

The foregoing example illustrates that brute-force methods such as incremental search
are not foolproof. You would be wise to supplement such automatic techniques with any
other information that provides insight into the location of the roots. Such information can
be found by plotting the function and through understanding the physical problem from
which the equation originated.

5.4 BISECTION

The bisection method is a variation of the incremental search method in which the interval
is always divided in half. If a function changes sign over an interval, the function value at
the midpoint is evaluated. The location of the root is then determined as lying within the
subinterval where the sign change occurs. The subinterval then becomes the interval for the
next iteration. The process is repeated until the root is known to the required precision. A
graphical depiction of the method is provided in Fig. 5.5. The following example goes
through the actual computations involved in the method.

EXAMPLE 5.3 The Bisection Method

Problem Statement. Use bisection to solve the same problem approached graphically in
Example 5.1.

Solution. The first step in bisection is to guess two values of the unknown (in the present
problem, m) that give values for f (m) with different signs. From the graphical solution in
Example 5.1, we can see that the function changes sign between values of 50 and 200. The
plot obviously suggests better initial guesses, say 140 and 150, but for illustrative purposes
let’s assume we don’t have the benefit of the plot and have made conservative guesses.

3
�2

�1

0

1

2

3.5 4 4.5 5 5.5 6

cha92657_ch05.qxd 3/15/04 5:27 PM Page 90

5.4 BISECTION 91

Therefore, the initial estimate of the root xr lies at the midpoint of the interval

xr = 50 + 200

2
= 125

Note that the exact value of the root is 142.7376. This means that the value of 125 calcu-
lated here has a true percent relative error of

|εt | =
∣∣∣∣142.7376 − 125

142.7376

∣∣∣∣ × 100% = 12.43%

Next we compute the product of the function value at the lower bound and at the midpoint:

f (50) f (125) = −4.579(−0.409) = 1.871

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located in the upper interval between 125 and
200. Therefore, we create a new interval by redefining the lower bound as 125.

At this point, the new interval extends from xl = 125 to xu = 200. A revised root esti-
mate can then be calculated as

xr = 125 + 200

2
= 162.5

�6

�4

�2

0

2

50 100 150

First iteration

Second iteration

Third iteration

Fourth iteration

Root

f (m)

m

xl xr xu

xl xr xu

xl xr xu

xl xr xu

FIGURE 5.5
A graphical depiction of the bisection method. This plot corresponds to the first four iterations
from Example 5.3.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 91

92 ROOTS OF EQUATIONS: BRACKETING METHODS

which represents a true percent error of |εt | = 13.85%. The process can be repeated to ob-
tain refined estimates. For example,

f (125) f (162.5) = −0.409(0.359) = −0.147

Therefore, the root is now in the lower interval between 125 and 162.5. The upper bound
is redefined as 162.5, and the root estimate for the third iteration is calculated as

xr = 125 + 162.5

2
= 143.75

which represents a percent relative error of εt = 0.709%. The method can be repeated until
the result is accurate enough to satisfy your needs.

We ended Example 5.3 with the statement that the method could be continued to ob-
tain a refined estimate of the root. We must now develop an objective criterion for decid-
ing when to terminate the method.

An initial suggestion might be to end the calculation when the error falls below some
prespecified level. For instance, in Example 5.3, the true relative error dropped from 12.43
to 0.709% during the course of the computation. We might decide that we should terminate
when the error drops below, say, 0.5%. This strategy is flawed because the error estimates
in the example were based on knowledge of the true root of the function. This would not be
the case in an actual situation because there would be no point in using the method if we al-
ready knew the root.

Therefore, we require an error estimate that is not contingent on foreknowledge of the
root. One way to do this is by estimating an approximate percent relative error as in [recall
Eq. (4.5)]

|εa| =
∣∣∣∣ xnew

r − xold
r

xnew
r

∣∣∣∣ 100% (5.5)

where xnew
r is the root for the present iteration and xold

r is the root from the previous itera-
tion. When εa becomes less than a prespecified stopping criterion εs , the computation is
terminated.

EXAMPLE 5.4 Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a
stopping criterion of εs = 0.5%. Use Eq. (5.5) to compute the errors.

Solution. The results of the first two iterations for Example 5.3 were 125 and 162.5. Sub-
stituting these values into Eq. (5.5) yields

|εa| =
∣∣∣∣162.5 − 125

162.5

∣∣∣∣100% = 23.08%

Recall that the true percent relative error for the root estimate of 162.5 was 13.85%. There-
fore, |εa| is greater than |εt |. This behavior is manifested for the other iterations:

cha92657_ch05.qxd 3/15/04 5:27 PM Page 92

5.4 BISECTION 93

Iteration xl xu xr |εa| (%) |εt| (%)

1 50 200 125 12.43
2 125 200 162.5 23.08 13.85
3 125 162.5 143.75 13.04 0.71
4 125 143.75 134.375 6.98 5.86
5 134.375 143.75 139.0625 3.37 2.58
6 139.0625 143.75 141.4063 1.66 0.93
7 141.4063 143.75 142.5781 0.82 0.11
8 142.5781 143.75 143.1641 0.41 0.30

Thus after eight iterations |εa| finally falls below εs = 0.5%, and the computation can be
terminated.

These results are summarized in Fig. 5.6. The “ragged” nature of the true error is due
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls at either end of the interval.

0.1

1

10

100

Iterations

P
er

ce
n

t
re

la
ti

ve
 e

rr
o

r

Approximate error, ��a�

True error, ��t�

0 2 4 6 8

FIGURE 5.6
Errors for the bisection method. True and estimated errors are plotted versus the number of iterations.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.6 suggests that |εa|, captures the general downward trend of |εt |. In addition, the plot
exhibits the extremely attractive characteristic that |εa| is always greater than |εt |. Thus,
when |εa| falls below εs , the computation could be terminated with confidence that the root
is known to be at least as accurate as the prespecified acceptable level.

While it is dangerous to draw general conclusions from a single example, it can be
demonstrated that |εa| will always be greater than |εt | for bisection. This is due to the fact

cha92657_ch05.qxd 3/15/04 5:27 PM Page 93

94 ROOTS OF EQUATIONS: BRACKETING METHODS

that each time an approximate root is located using bisection as xr = (xl + xu)/2, we know
that the true root lies somewhere within an interval of �x = xu − xl . Therefore, the root
must lie within ±�x/2 of our estimate. For instance, when Example 5.4 was terminated,
we could make the definitive statement that

xr = 143.1641 ± 143.7500 − 142.5781

2
= 143.1641 ± 0.5859

In essence, Eq. (5.5) provides an upper bound on the true error. For this bound to be
exceeded, the true root would have to fall outside the bracketing interval, which by defini-
tion could never occur for bisection. Other root-locating techniques do not always behave
as nicely. Although bisection is generally slower than other methods, the neatness of its
error analysis is a positive feature that makes it attractive for certain engineering and sci-
entific applications.

Another benefit of the bisection method is that the number of iterations required to at-
tain an absolute error can be computed a priori—that is, before starting the computation.
This can be seen by recognizing that before starting the technique, the absolute error is

E0
a = x0

u − x0
l

2
= �x0

2

where the superscript designates the iteration. Hence, before starting the method we are at
the “zero iteration.” After the first iteration, the error becomes

E1
a = �x0

4

Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations n is

En
a = �x0

2n+1

If Ea,d is the desired error, this equation can be solved for2

n = 1 + log(�x0/Ea,d)

log 2
= 1 + log2

(
�x0

Ea,d

)
(5.6)

Let’s test the formula. For Example 5.4, the initial interval was �x0 = 200 − 50 = 150.
After eight iterations, the absolute error was

Ea = |143.7500 − 142.5781|
2

= 0.5859

We can substitute these values into Eq. (5.6) to give

n = 1 + log2

(
150/0.5859

2

)
= 8

Thus, if we knew beforehand that an error of less than 0.5859 was acceptable, the formula
tells us that eight iterations would yield the desired result.

Although we have emphasized the use of relative errors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) you will be able to

2 MATLAB provides the log2 function to evaluate the base-2 logarithm directly. If the pocket calculator or
computer language you are using does not include the base-2 logarithm as an intrinsic function, this equation
shows a handy way to compute it. In general, logb(x) = log(x)/log(b).

cha92657_ch05.qxd 3/15/04 5:27 PM Page 94

5.4 BISECTION 95

specify an absolute error. For these cases, bisection along with Eq. (5.6) can provide a use-
ful root location algorithm.

5.4.1 MATLAB M-file: bisection

An M-file to implement bisection is displayed in Fig. 5.7. It is passed the function (func)
along with lower (xl) and upper (xu) guesses. In addition an optional stopping criterion

function root = bisection(func,xl,xu,es,maxit)
% bisection(xl,xu,es,maxit):
% uses bisection method to find the root of a function
% input:
% func = name of function
% xl, xu = lower and upper guesses
% es = (optional) stopping criterion (%)
% maxit = (optional) maximum allowable iterations
% output:
% root = real root

if func(xl)*func(xu)>0 %if guesses do not bracket a sign
 error('no bracket') %change, display an error message
 return %and terminate
end
% if necessary, assign default values
if nargin<5, maxit = 50; end %if maxit blank set to 50
if nargin<4, es = 0.001; end %if es blank set to 0.001

% bisection
iter = 0;
xr = xl;
while (1)
 xrold = xr;
 xr = (xl + xu)/2;
 iter = iter + 1;
 if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end
 test = func(xl)*func(xr);
 if test < 0
 xu = xr;
 elseif test > 0
 xl = xr;
 else
 ea = 0;
 end
 if ea <= es | iter >= maxit, break, end
end
root = xr;

FIGURE 5.7
An M-file to implement the bisection method.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 95

96 ROOTS OF EQUATIONS: BRACKETING METHODS

(es) and maximum iterations (maxit) can be entered. The function first checks whether
the initial guesses bracket a sign change. If not, an error estimate is displayed and the func-
tion is terminated. It also supplies default values if maxit and es are not supplied. Then a
while . . . break loop is employed to implement the bisection algorithm until the ap-
proximate error falls below the stopping criterion or the iterations exceed maxit.

5.5 FALSE POSITION

False position (also called the linear interpolation method) is another well-known bracket-
ing method. It is very similar to bisection with the exception that it uses a different strategy
to come up with its new root estimate. Rather than bisecting the interval, it locates the root
by joining f (xl) and f (xu) with a straight line (Fig. 5.8). The intersection of this line with
the x axis represents an improved estimate of the root. Thus, the shape of the function in-
fluences the new root estimate. Using similar triangles, the intersection of the straight line
with the x axis can be estimated as (see Chapra and Canale, 2002, for details),

xr = xu − f (xu)(xl − xu)

f (xl) − f (xu)
(5.7)

This is the false-position formula. The value of xr computed with Eq. (5.7) then re-
places whichever of the two initial guesses, xl or xu , yields a function value with the same
sign as f (xr). In this way the values of xl and xu always bracket the true root. The process
is repeated until the root is estimated adequately. The algorithm is identical to the one for
bisection (Fig. 5.7) with the exception that Eq. (5.7) is used.

x

f (x)

f (xl)

f (xu)

xu

xl

xr

FIGURE 5.8
False position.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 96

5.5 FALSE POSITION 97

EXAMPLE 5.5 The False-Position Method

Problem Statement. Use false position to solve the same problem approached graphi-
cally and with bisection in Examples 5.1 and 5.3.

Solution. As in Example 5.3, initiate the computation with guesses of xl = 50 and
xu = 200.

First iteration:

xl = 50 f (xl) = −4.579387

xu = 200 f (xu) = 0.860291

xr = 200 − 0.860291(50 − 200)

−4.579387 − 0.860291
= 176.2773

which has a true relative error of 23.5%.

Second iteration:

f (xl) f (xr) = −2.592732

Therefore, the root lies in the first subinterval, and xr becomes the upper limit for the next
iteration, xu = 176.2773.

xl = 50 f (xl) = −4.579387

xu = 176.2773 f (xu) = 0.566174

xr = 176.2773 − 0.566174(50 − 176.2773)

−4.579387 − 0.566174
= 162.3828

which has true and approximate relative errors of 13.76% and 8.56%, respectively. Addi-
tional iterations can be performed to refine the estimates of the root.

Although false position often performs better than bisection, there are other cases
where it does not. As in the following example, there are certain cases where bisection
yields superior results.

EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position

Problem Statement. Use bisection and false position to locate the root of

f (x) = x10 − 1

between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

cha92657_ch05.qxd 3/15/04 5:27 PM Page 97

98 ROOTS OF EQUATIONS: BRACKETING METHODS

Thus, after five iterations, the true error is reduced to less than 2%. For false position, a
very different outcome is obtained:

Iteration xl xu xr εa (%) εt (%)

1 0 1.3 0.09430 90.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 73.7
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 17.1 59.2

After five iterations, the true error has only been reduced to about 59%. Insight into
these results can be gained by examining a plot of the function. As in Fig. 5.9, the curve vi-
olates the premise on which false position was based—that is, if f (xl) is much closer to
zero than f (xu), then the root is closer to xl than to xu (recall Fig. 5.8). Because of the shape
of the present function, the opposite is true.

1.0

10

5

0

f (x)

x

FIGURE 5.9
Plot of f (x) = x10 − 1, illustrating slow convergence of the false-position method.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 98

PROBLEMS 99

The forgoing example illustrates that blanket generalizations regarding root-location
methods are usually not possible. Although a method such as false position is often supe-
rior to bisection, there are invariably cases that violate this general conclusion. Therefore,
in addition to using Eq. (5.5), the results should always be checked by substituting the root
estimate into the original equation and determining whether the result is close to zero. Such
a check should be incorporated into all computer programs for root location.

The example also illustrates a major weakness of the false-position method: its one-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to
stay fixed. This can lead to poor convergence, particularly for functions with significant
curvature. Possible remedies for this shortcoming are available elsewhere (Chapra and
Canale, 2002).

PROBLEMS

5.1 Use bisection to determine the drag coefficient needed
so that an 80-kg bungee jumper has a velocity of 36 m/s after
4 s of free fall. Note: The acceleration of gravity is 9.81 m/s2.
Start with initial guesses of xl = 0.1 and xu = 0.2 and iter-
ate until the approximate relative error falls below 2%.
5.2 Develop your own M-file for bisection in a similar fash-
ion to Fig. 5.7. However, rather than using the maximum
iterations and Eq. (5.5), employ Eq. (5.6) as your stopping
criterion. Make sure to round the result of Eq. (5.6) up to the
next highest integer. Test your function by solving Prob. 5.1
using Ea,d = 0.0001.
5.3 Repeat Prob. 5.1, but use the false-position method to
obtain your solution.
5.4 Develop an M-file for the false-position method. Test it
by solving Prob. 5.1.
5.5 A beam is loaded as shown in Fig. P5.5. Use the bisec-
tion method to solve for the position inside the beam where
there is no moment.
5.6 (a) Determine the roots of f (x) = −12 − 21x +
18x2 − 2.75x3 graphically. In addition, determine the first
root of the function with (b) bisection and (c) false position.

For (b) and (c) use initial guesses of xl = −1 and xu = 0
and a stopping criterion of 1%.
5.7 Locate the first nontrivial root of sin(x) = x2 where x is
in radians. Use a graphical technique and bisection with the
initial interval from 0.5 to 1. Perform the computation until
εa is less than εs = 2%.
5.8 Determine the positive real root of ln(x2) = 0.7 (a)
graphically, (b) using three iterations of the bisection
method, with initial guesses of xl = 0.5 and xu = 2, and
(c) using three iterations of the false-position method, with
the same initial guesses as in (b).
5.9 The saturation concentration of dissolved oxygen in
freshwater can be calculated with the equation

ln osf = −139.34411 + 1.575701 × 105

Ta

− 6.642308 × 107

T 2
a

+ 1.243800 × 1010

T 3
a

− 8.621949 × 1011

T 4
a

where osf = the saturation concentration of dissolved oxy-
gen in freshwater at 1 atm (mg L−1); and Ta = absolute
temperature (K). Remember that Ta = T + 273.15, where
T = temperature (°C). According to this equation, saturation
decreases with increasing temperature. For typical natural
waters in temperate climates, the equation can be used to de-
termine that oxygen concentration ranges from 14.621 mg/L
at 0 °C to 6.949 mg/L at 35 °C. Given a value of oxygen con-
centration, this formula and the bisection method can be
used to solve for temperature in °C.
(a) If the initial guesses are set as 0 and 35 °C, how many

bisection iterations would be required to determine tem-
perature to an absolute error of 0.05 °C?

3’ 3’ 4’2’

100 lb100 lb/ft

FIGURE P5.5

cha92657_ch05.qxd 3/15/04 5:27 PM Page 99

100 ROOTS OF EQUATIONS: BRACKETING METHODS

(b) Based on (a), develop and test a bisection M-file func-
tion to determine T as a function of a given oxygen con-
centration. Test your function for osf = 8, 10 and
14 mg/L. Check your results.

5.10 Water is flowing in a trapezoidal channel at a rate of
Q = 20 m3/s. The critical depth y for such a channel must
satisfy the equation

0 = 1 − Q2

g A3
c

B

where g = 9.81 m/s2, Ac = the cross-sectional area (m2),
and B = the width of the channel at the surface (m). For this

case, the width and the cross-sectional area can be related to
depth y by

B = 3 + y

and

Ac = 3y + y2

2

Solve for the critical depth using (a) the graphical method,
(b) bisection, and (c) false position. For (b) and (c) use ini-
tial guesses of xl = 0.5 and xu = 2.5, and iterate until the
approximate error falls below 1% or the number of iterations
exceeds 10. Discuss your results.

cha92657_ch05.qxd 3/15/04 5:27 PM Page 100

