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Chapter 4

Dynamic Response of Structures

James C. Anderson, Ph.D.
Professor of Civil Engineering, University of Southern California, Los Angeles, California
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Abstract: Basic principles of structural dynamics are presented with emphasis on applications to the earthquake
resistant design of building structures. Dynamic characteristics of single degree of freedom systems are
discussed along with their application to single story buildings. The response of these systems to harmonic
and impulse loading is described and illustrated by application to simple structures. Consideration of the
earthquake response of these systems leads to the concept of the elastic response spectrum and the
development of design spectra. The use of procedures based on a single degree of freedom is extended to
multiple degree of freedom systems through the use of the generalized coordinate approach. The
determination of generalized dynamic properties is discussed and illustrated. A simple numerical integration
procedure for determining the nonlinear dynamic response is presented. The application of matrix methods
for the analysis of multiple degree of freedom systems is discussed and illustrated along with earthquake
response analysis. A response spectrum procedure suitable for hand calculation is presented for elastic
response analyses. The nonlinear static analysis for proportional loading and the nonlinear dynamic analysis
for earthquake loading are discussed and illustrated with application to building structures. Finally, the use
of the recorded response from buildings containing strong motion instrumentation for verification of
analytical models is discussed.
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4.1 Introduction

The main cause of damage to structures
during an earthquake is their response to ground
motions which are input at the base. In order to
evaluate the behavior of the structure under this
type of loading condition, the principles of
structural dynamics must be applied to
determine the stresses and deflections, which
are developed in the structure. Structural
engineers are familiar with the analysis of
structures for static loads in which a load is
applied to the structure and a single solution is
obtained for the resulting displacements and
member forces. When considering the analysis
of structures for dynamic motions, the term
dynamic simply means “time-varying”. Hence
the loading and all aspects of the response vary
with time. This results in possible solutions at
each instant during the time interval under
consideration. From an engineering standpoint,
the maximum values of the structural response
are usually the ones of particular interest,
specially in the case of structural design.

The purpose of this chapter is to introduce
the principles of structural dynamics with
emphasis on earthquake response analysis.
Attention will initially be focused on the
response of simple structural systems, which
can be represented in terms of a single degree
of freedom. The concepts developed for these
systems will then be extended to include
generalized single-degree-of-freedom (SDOF)
systems using the generalized-coordinate
approach. This development in turn leads to the
consideration of the response of structures
having multiple degrees of freedom. Finally,
concepts and techniques used in nonlinear
dynamic-response analysis will be introduced.

4.2 Dynamic Equilibrium

The basic equation of static equilibrium
used in the displacement method of analysis has
the form,

kvp = (4-1)

where p is the applied force, k is the stiffness
resistance, and v is the resulting displacement.
If the statically applied force is now replaced by
a dynamic or time-varying force p(t), the
equation of static equilibrium becomes one of
dynamic equilibrium and has the form

)()()()( tkvtvctvmtp ++= &&& (4-2)

where a dot represents differentiation with
respect to time.

A direct comparison of these two equations
indicates that two significant changes, which
distinguish the static problem from the dynamic
problem, were made to Equation 4-1 in order to
obtain Equation 4-2. First, the applied load and
the resulting response are now functions of
time, and hence Equation 4-2 must be satisfied
at each instant of time during the time interval
under consideration. For this reason it is usually
referred to as an equation of motion. Secondly,
the time dependence of the displacements gives
rise to two additional forces which resist the
applied force and have been added to the right-
hand side.

The equation of motion represents an
expression of Newton’s second law of motion,
which states that a particle acted on by a force
(torque) moves so that the time rate of change
of its linear (angular) momentum is equal to the
force (torque):

)()(
dt

dv
m

dt

d
tp = (4-3)

where the rate of change of the displacement
with respect to time, dv/dt, is the velocity, and
the momentum is given by the product of the
mass and the velocity. Recall that the mass is
equal to the weight divided by the acceleration
of gravity. If the mass is constant, Equation 4-3
becomes

)()()( tvm
dt

dv

dt

d
mtp &&== (4-4)
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which states that the force is equal to the
product of mass and acceleration. According to
d’Alembert’s principle, mass develops an
inertia force, which is proportional to its
acceleration and opposing it. Hence the first
term on the right-hand side of Equation 4-2 is
called the inertia force; it resists the
acceleration of the mass.

Dissipative or damping forces are inferred
from the observed fact that oscillations in a
structure tend to diminish with time once the
time-dependent applied force is removed. These
forces are represented by viscous damping
forces, that are proportional to the velocity with
the constant proportionality referred to as the
damping coefficient. The second term on the
right-hand side of Equation 4-2 is called the
damping force.

Inertia forces are the more significant of the
two and are a primary distinction between static
and dynamic analyses.

It must also be recognized that all structures
are subjected to gravity loads such as self-
weight (dead load) and occupancy load (live
load) in addition to dynamic base motions. In
an elastic system, the principle of superposition
can be applied, so that the responses to static
and dynamic loadings can be considered
separately and then combined to obtain the total
structural response. However, if the structural
behavior becomes nonlinear, the response
becomes load-path-dependent and the gravity
loads must be considered concurrently with the
dynamic base motions.

Under strong earthquake motions, the
structure will most likely display nonlinear
behavior, which can be caused by material
nonlinearity and/or geometric nonlinearity.
Material nonlinearity occurs when stresses at
certain critical regions in the structure exceed
the elastic limit of the material. The equation of
dynamic equilibrium for this case has the
general form

)()()()()( tvtktvctvmtp ++= &&& (4-5)

in which the stiffness or resistance k is a
function of the yield condition in the structure,

which in turn is a function of time. Geometric
nonlinearity is caused by the gravity loads
acting on the deformed position of the structure.
If the lateral displacements are small, this
effect, which is often referred to as P-delta, can
be neglected. However, if the lateral
displacements become large, this effect must be
considered. In order to define the inertia forces
completely, it would be necessary to consider
the accelerations of every mass particle in the
structure and the corresponding displacements.
Such a solution would be prohibitively time-
consuming. The analysis procedure can be
greatly simplified if the mass of the structure
can be concentrated (lumped) at a finite number
of discrete points and the dynamic response of
the structure can be represented in terms of this
limited number of displacement components.
The number of displacement components
required to specify the position of the mass
points is called the number of dynamic degrees
of freedom. The number of degrees of freedom
required to obtain an adequate solution will
depend upon the complexity of the structural
system. For some structures a single degree of
freedom may be sufficient, whereas for others
several hundred degrees of freedom may be
required.

4.3 SINGLE-DEGREE-OF-
FREEDOM SYSTEMS

4.3.1 Time-Dependent Force

The simplest structure that can be
considered for dynamic analysis is an idealized,
one-story structure in which the single degree
of freedom is the lateral translation at the roof
level as shown in Figure 4-1. In this
idealization, three important assumptions are
made. First, the mass is assumed to be
concentrated (lumped) at the roof level. Second,
the roof system is assumed to be rigid, and
third, the axial deformation in the columns is
neglected. From these assumptions it follows
that all lateral resistance is in the resisting
elements such as columns, walls, and diagonal
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braces located between the roof and the base.
Application of these assumptions results in a
discretized structure that can be represented as
shown in either Figure 4-lb or 4-1c with a time-
dependent force applied at the roof level. The
total stiffness k is simply the sum of the
stiffnesses of the resisting elements in the story
level.

The forces acting on the mass of the
structure are shown in Figure 4-1d. Summing
the forces acting on the free body results in the
following equation of equilibrium, which must
be satisfied at each instant of time:

)(tpfff sdi =++ (4-6)

where

fi = inertia force = um &&

fd = damping (dissipative) force= vc &
fs = elastic restoring force = kv

)(tp  = time-dependent applied force

u&& is the total acceleration of the mass, and
vv,& are the velocity and displacement of the

mass relative to the base. Writing Equation 4-6
in terms of the physical response parameters
results in

)(tpkvvcum =++ &&& (4-7)

It should be noted that the forces in the
damping element and in the resisting elements
depend upon the relative velocity and relative
displacement, respectively, across the ends of
these elements, whereas the inertia force
depends upon the total acceleration of the mass.
The total acceleration of the mass can be

Figure 4-1. single-degree-of-freedom system subjected to time-dependent force.
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expressed as

)()()( tvtgtu &&&&&& += (4-8)

where

)(tv&&  = acceleration of the mass relative to
the base

)(tg&&  = acceleration of the base

In this case, the base is assumed to be fixed
with no motion, and hence 0)( =tg&& and

)()( tvtu &&&& = . Making this substitution for
the acceleration, Equation 4-7 for a time-
dependent force becomes

)(tpkvvcvm =++ &&& (4-9)

4.3.2 Earthquake Ground Motion

When a single-story structure, shown in
Figure 4-2a, is subjected to earthquake ground
motions, no external dynamic force is applied at
the roof level. Instead, the system experiences
an acceleration of the base. The effect of this on
the idealized structure is shown in Figure 4-2b
and 4-2c. Summing the forces shown in Figure
4-2d results in the following equation of
dynamic equilibrium:

0=++ sdi fff (4-10)

Substituting the physical parameters for fi, fd

and fs in Equation 4-10 results in an equilibrium
equation of the form

0=++ kvvcum &&& (4-11)

Figure 4-2. Single-degree-of-freedom system subjected to base motion.
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This equation can be written in the form of
Equation 4-9 by substituting Equation 4-8 into
Equation 4-11 and rearranging terms to obtain

)(tpkvvcvm e=++ &&& (4-12)

where

)(tpe  = effective time-dependent force
          = )(tgm &&−
Hence the equation of motion for a structure

subjected to a base motion is similar to that for
a structure subjected to a time-dependent force
if the base motion is represented as an effective
time-dependent force which is equal to the
product of the mass and the ground
acceleration.

4.3.3 Mass and Stiffness Properties

Most SDOF models consider structures,
which experience a transactional displacement
of the roof relative to the base. In this case the
translational mass is simply the concentrated
weight divided by the acceleration of gravity
(32.2 ft/sec2 or 386.4 in./sec2). However, cases
do arise in which the rotational motion of the
system is significant. An example of this might
be the rotational motion of a roof slab which
has unsymmetrical lateral supports. Newton’s
second law of motion states that the time rate of
change of the angular momentum (moment of
momentum) equals the torque. Considering a
particle of mass rotating about an axis o, as
shown in Figure 4-3, the moment of momentum
can be expressed as

dt

d
mrtvrmL

θ== 2)(& (4-13)

The torque N is then obtained by taking the
time derivative:

θ== &&I
dt

dL
N (4-14)

Figure 4-3. Rotating particle of mass.

where

2mrI = = mass moment of inertia

For a rigid body, the mass moment of inertia
can be obtained by summing over all the mass
particles making up the rigid body. This can be
expressed in integral form as

∫ ρ= dmI 2  (4-15)

where ρ  is the distance from the axis of
rotation to the incremental mass dm. For
dynamic analysis it is convenient to treat the
rigid-body inertia forces as though the
translational mass and the mass moment of
inertia were concentrated at the center of mass.
The mass and mass moment of inertia
of several common rigid bodies are summarized
in Figure 4-4.

Example 4-1 (Determination of Mass
Properties)

Compute the mass and mass moment of
inertia for the rectangular plate shown in Figure
4-5.

• Translational mass:
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abtm µµν ==

where
µ  = mass density = mass per unit volume
V = total volume

• Rotational mass moment of inertia:

∫ ρ= dmI 2  ,           Where 222 yx +=ρ

tdxdydVdm µ=µ=

∫ ∫ ∫ +µ=ρ=
2/

0

2/

0

222 )(4
a b

dxdyyxtdmI

12

1248
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Figure 4-4. Rigid-body mass and mass moment of inertia.
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Figure 4-5. Rectangular plate of example 4-1.

In order to develop dynamic models of
SDOF systems, it is necessary to review the

force—displacement (stiffness) relationships of
several of the more common lateral force
members used in building structures. As
indicated previously, the assumptions used in
developing the SDOF model restrict lateral
resistance to structural members between the
roof and base. These might include such
members as columns, diagonal braces, and
walls. Stiffness properties for these elements
are summarized in Figure 4-6.

4.3.4 Free Vibration

Free vibration occurs when a structure
oscillates under the action of forces that are
inherent in the structure without any externally

Figure 4-6. Stiffness properties of lateral force resisting elements.



192 Chapter 4

applied time-dependent loads or ground
motions. These inherent forces arise from the
initial velocity and displacement the structure
has at the beginning of the free-vibration phase.

Undamped Structures The equation of
motion for an undamped SDOF system in free
vibration has the form

0)()( =+ tkvtvm &&  (4-16)

which can be written as

0)()( 2 =ω+ tvtv&& (4-17)

where mk /2 =ω . This equation has the
general solution

tBtAtv ω+ω= cossin)( (4-18)

in which the constants of integration A and B
depend upon the initial velocity )0(v&  and initial
displacement v(0). Applying the initial
conditions, the solution has the form

tvt
v

tv ω+ω
ω

= cos)0(sin
)0(

)(
&

(4-19)

This solution in time is represented
graphically in Figure 4-7.

Several important concepts of oscillatory
motion can be illustrated with this result. The
amplitude of vibration is constant, so that the
vibration would, theoretically, continue
indefinitely with time. This cannot physically
be true, because free oscillations tend to
diminish with time, leading to the concept of
damping. The time it takes a point on the curve
to make one complete cycle and return to its
original position is called the period of
vibration, T. The quantity ω is the circular
frequency of vibration and is measured in
radians per second. The cyclic frequency f is
defined as the reciprocal of the period and is
measured in cycles per second, or hertz. These
three vibration properties depend only on the
mass and stiffness of the structure and are
related as follows:

fk

m
T

1
2

2 =π=
ω
π= (4-20a)

The amplitude of motion is given as:

( ) ( )[ ]2

2.

0
0

v
w

v
p +














= (4-20b)

Figure 4-7. Free-vibration response of an undamped
SDOF system.

It can be seen from these expressions that if
two structures have the same stiffness, the one
having the larger mass will have the longer
period of vibration and the lower frequency. On
the other hand, if two structures have the same
mass, the one having the higher stiffness will
have the shorter period of vibration and the
higher frequency.

Example 4-2 (Period of undamped free
vibration)

Construct an idealized SDOF model for the
industrial building shown in Figure 4-8, and
estimate the period of vibration in the two
principal directions. Note that vertical cross
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bracings are made of 1-inch-diameter rods,
horizontal cross bracing is at the bottom chord
of trusses, and all columns are W8 ×  24.

•Weight determination:
  Roof level:
     Composition roof 9.0 psf
      Lights, ceiling, mechanical 6.0 psf
      Trusses 2.6 psf
      Roof purlins, struts 2.0 psf
      Bottom chord bracing 2.1 psf
      Columns (10 ft, 9 in.) 0.5 psf
      Total 22.2 psf
  Walls:
     Framing, girts, windows 4.0 psf
     Metal lath and plaster 6.0 psf
     Total 10.0 psf

 Total weight and mass:

W = (22.2)(100)(75) + (10)(6)(200 + 150)
W = 187,500 lb = 187.5 kips

485.0
4.386

5.187 ===
g

W
m  kips-sec2/in.

•Stiffness determination:
   North—south (moment frames):

kips/in.6.231)6.9(24

kips/in.6.9

)144(

)8.82)(29000)(12(12
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   East—west (braced frames):

kips/in.7.358)7.59(6

kips/in.7.59
280

)858.0)(29000)(785.0(

585.0)31(,31)20/12(tan

in.280ft3.232012
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• Period determination:

    North—south:

Hz48.3
1

sec.287.0
8.21

22
  

rad/sec8.21
485.0

6.231

==

===

===

T
f

T

m

k

π
ω
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Figure 4-8. Building of Example 4-2.

East—west:

HZ3.4
1

sec.23.0
2.27

22

rad/sec2.27
485.0

7.358

==

=π=
ω
π=

===ω

T
f

T

m

k

Damped Structures In an actual structure
which is in free vibration under the action of
internal forces, the amplitude of the vibration
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tends to diminish with time and eventually the
motion will cease. This decrease with time is
due to the action of viscous damping forces
which are proportional to the velocity. The
equation of motion for this condition has the
form

0)()()( =++ tkvtvctvm &&&  (4-21)

This equation has the general solution







ω+

ω
ω

λω+= λω− tv
t

vvetv d
d

dt cos)0(
sin

])0()0([)( &

(4-22a)

where

ω
==λ

m

C

C

C

cr 2
 = percentage of critical

damping

21 λ−ω=ωd  = damped circular

frequency

Figure 4-9. Free vibration response of a damped SDOF
system.

The solution to this equation with time is
shown in Figure 4-9. The damping in the
oscillator is expressed in terms of a percentage
of critical damping, where critical damping is

defined as 2mω and is the least amount of
damping that will allow a displaced oscillator to
return to its original position without
oscillation. For most structures, the amount of
viscous damping in the system will vary
between 3% and 10% of critical. Substituting
an upper value of 20% into the above
expression for the damped circular frequency
gives the result that ω d = 0.98ω . Since the two
values are approximately the same for values of
damping found in structural systems, the
undamped circular frequency is used in place of
the damped circular frequency. In this case the
amplitude of motion is given as:

( ) ( ) ( )[ ]2

2.

0
00

v
w

wvv
p

D

+












 += λ
(4-22b)

One of the more useful results of the free-
vibration response is the estimation of the
damping characteristics of a structure. If a
structure is set in motion by some external
force, which is then removed, the amplitude
will decay exponentially with time as shown in
Figure 4-9. It can further be shown that the ratio
between any two successive amplitude peaks
can be approximated by the expression

πλ=
+

2

)1(

)(
e

iv

iv
(4-23)

Taking the natural logarithm of both sides
results in

πλ=
+

=δ 2
)1(

)(
ln

iv

iv
(4-24)

where the parameter δ  is called the
logarithinic decrement. Solving for the
percentage of critical damping, λ, gives

π
δ≈λ

2
(4-25)
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The above equation provides one of the
more useful means of experimentally estimating
the damping characteristics of a structure.

4.4 Response to Basic Dynamic
Loading

4.4.1 Introduction

Time histories of earthquake accelerations
are in general random functions of time.
However, considerable insight into the response
of structures can be gained by considering the
response characteristics of structures to two
basic dynamic loadings; harmonic loading and
impulse loading. Harmonic loading idealizes
the earthquake acceleration time history as a
train of sinusoidal waves having a given
amplitude. These might be representative of the
accelerations generated by a large, distant
earthquake in which the random waves
generated at the source have been filtered by
the soil conditions along the travel path.

Impulse loading idealizes the earthquake
accelerations as a short duration impulse
usually having a sinusoidal or symmetrical
(isosceles) triangular shape. The idealization
may be a single pulse or it may be a pulse train
containing a limited number of pulses. This
loading is representative of that which occurs in
the near fault region.

This section will present a brief overview of
the effects of harmonic loading and impulse
loading on the response of building structures.

4.4.2 Harmonic Loading

For an undamped system subjected to
simple harmonic loading, the equation of
motion has the form

ptpkvvm sin0=+&& (3-26a)

where P0 is the amplitude and p is the
circular frequency of the harmonic load.
For a ground acceleration, the acceleration

can be represented as ptg sin0&& , the

equivalent force amplitude as ooe gmp &&=
and the frequency ratio β = p/ω. The
solution for the time dependent
displacement has the form

)sin(sin
)1(

1
)(

2
tpt

k

gm
tv o ωβ−

β−
×=

&&

(3-26b)

where

ntdisplaceme static the// == kpkgm oeo&&

21

1

β−
 = dynamic amplification factor

sin pt = steady state response

βsin ω t = transient response induced
                 by the initial conditions

From equation (4-26b) it can be seen that for
lightly damped systems, the peak steady state
response occurs at a frequency ratio near unity
when the exciting frequency of the applied load
equals the natural frequency of the system. This
is the condition that is called resonance. The
result given in Equation (4-26b) implies that the
response of the undamped system goes to
infinity at resonance, however, a closer
examination in the region of β equal to unity,
Clough and Penzien (4-4) , shows that it only
tends toward infinity and that several cycles are
required for the response to build up. A similar
analysis for a damped system shows that at
resonance, the dynamic amplification
approaches a limit that is inversely proportional
to the damping ratio

λ
=

2

1
DA (4-26c)

For both the undamped and the damped
cases, the response builds up with the number
of cycles as shown in Figure 4-10a.
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Figure 4-10a. Resonance response.

The required number of cycles for the damped
case can be estimated as 1/λ. The condition of
resonance can occur in buildings which are
subjected to base accelerations having a
frequency that is close to that of the building
and having a long duration. The duration of the
ground shaking is an important factor in this
type of response for the reasons just discussed.
The Mexico City earthquakes (1957, 1979,
1985) have produced good examples of
harmonic type ground motions which have a
strong resonance effect on buildings. Ground
motions having a period of approximately 2
seconds were recorded during the 1985
earthquake and caused several buildings to
collapse in the upper floors.

It must be recognized that as the response
tends to build up, the effective damping will
increase and as cracking and local yielding
occur the period of the structure will shift. Both
of these actions in the building will tend to
reduce the maximum response. Since the
dynamic amplification and number of cycles to
reach the maximum response are both inversely
proportional to the damping, the use of
supplemental damping in the building to
counter this type of ground motion is attractive.

4.4.3 Impulse Motion

Much of the initial work on impulse loads
was done during the period of 1950-1965 and is
discussed by Norris et al.(4-15). The force on
structures generated by a blast or explosion can
be idealized as a single pulse of relatively short
duration. More recently it has become
recognized that some earthquake motions,
particularly those in the near fault region, can
be idealized as either a single pulse or as a
simple pulse train consisting of one to three
pulses. The accelerations recorded in Bucharest,
Romania during the Vrancea, Romania
earthquake (1977), shown in Figure 4-10b, are a
good example of this type of motion. It is of
interest to note that this site is more than 100
miles from the epicenter, indicating that this
type of motion is not limited to the near fault
region.

Figure 4-10b. Bucharest (1977) ground acceleration.

The maximum response to an impulse load
will generally be attained on the first cycle. For
this reason, the damping forces do not have
time to absorb much energy from the structure.
Therefore, damping has a limited effect in
controlling the maximum response and is
usually neglected when considering the
maximum response to impulse type loads.

The rectangular pulse is a basic pulse shape.
This pulse has a zero (instantaneous) rise time
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and a constant amplitude, po, which is applied
to the structure for a finite duration td. During
the time period when the load is on the structure
(t < td) the equation of motion has the form

opkvvm =+&& (4-26d)

which has the general solution

)cos1()( 0 t
k

p
tv ω−= (4-26e)

When the impulse load is no longer acting
on the structure, the system is responding in
free vibration and the equation of motion
becomes

ttvt
tv

tv d
d ω+ω

ω
= cos)(sin

)(
)(

&
(4-26f)

where

dttt −=

The displacement, v(td) and the velocity
)( dtv&  at the end of the loading phase

become the initial conditions for the free
vibration phase. It can be shown that the
dynamic amplification, DA, which is
defined as the ratio of the maximum
dynamic displacement to the static
displacement, will equal 2 if td ≥  T/2 and
will equal 2sin(π td /T) if 2/Ttd ≤ . For

elastic response, the dynamic amplification
is a function of the shape of the impulse
load and the duration of the load relative to
the natural period of the structure as shown
in Figure 4-10c.

For nonlinear behavior, the equation of
motion becomes more complex, requiring the
use of numerical methods for solution. Results
of initial studies for basic pulse shapes were
presented in the form of response charts(4-15)

such as the one shown in Figure 4-10d which
can be thought of as a constant strength
response spectra. For nonlinear response, the
dynamic amplification factor is replaced by the

displacement ductility ratio which is defined as
the ratio of the maximum displacement to the
displacement at yield.

yieldv

vmax=µ (4-26g)

Figure 4-10c. Maximum elastic response, rectangular and
triangular load pulses.[4-16]

Figure 4-10d. Maximum elasto-plastic response,
rectangular load pulse.[4-16]

It can also be seen that the single curve
representing the elastic response becomes a
family of curves for the inelastic response.
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These curves depend upon the ratio of the
maximum system resistance, Rm, to the
maximum amplitude of the impulse load. Note
that the bottom curve in Figure 4-10d which has
a resistance ratio of 2 represents the elastic
response curve with the ductility equal to or
less than unity for all values of td /T. It can also
be seen that as the resistance ratio decreases,
the ductility demand increases.

4.4.4 Example 4-3 (Analysis for Impulse
Base Acceleration)

The three bay frame shown in Figure 4-10e
is assumed to be pinned at the base. It is
subjected to a ground acceleration pulse which
has an amplitude of 0.5g and a duration of 0.4
seconds. It should be noted that this
acceleration pulse is similar to one recorded at
the Newhall Fire Station during the Northridge
earthquake (1994). The lateral resistance at
ultimate load is assumed to be elasto-plastic.
The columns are W10× 54 with a clear height
of 15 feet and the steel is A36 having a nominal
yield stress of 36 ksi. Estimate the following:

Figure 4-10e. Building elevation, resistance and loading,
Example 4-3.

(a) the displacement ductility demand, (b) the
maximum displacement and (c) the residual
displacement.

For a W10× 54 column, I = 303 in4 and    Z
= 66.6 in3 The lateral stiffness of an individual
column is calculated as

in

kip

L

EI
ki 5.4

)1215(

303)29000(33
33

=
×

×==

and the total stiffness becomes

in

kip
0.185.44 =×== ∑ ikK

The mass is the weight divided by the
acceleration of gravity,

in

seckips
26.0

4.386

100 2

2sec

in

kips −===
g

W
m

The period of vibration of the structure can
now be calculated as

.sec75.0
0.18

26.0
22 =π=π=

k

m
T

and the duration ratio becomes

53.0
75.0

4.0 ==
T

td

The effective applied force, Pe is given as

kips505.05.0 ==×== WgmgmP oe &&

The ultimate lateral resistance of the
structure occurs when plastic hinges form   at
the tops of the columns and a sway mechanism
is formed. The nominal plastic moment
capacity of a single column is

 kips-in 240066636 =×== .. Z  F M yP

and the shear resistance is

kips. 13.33 
180

2400P ===
h

M
Vi

The total lateral resistance is

KipsVR i 33.534 ==

The resistance to load ratio, is then given as

1.1
50

3.53 ==
evP

R
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Using this ratio and the duration ratio,     td

/T and entering the response spectrum given
in Figure 4-10d, the displacement ductility
demand is found to be 2.7. The
displacement at yield can be obtained as

.0.3
18

3.53
in

K

R
vy ===

and the maximum displacement is

in.1.80.37.2max =×=×= ylcv µ

The residual or plastic deformation is the
difference between the maximum displacement
and the displacement at yield.

inchesvv presidual 1.50.31.8)( =−==

More recently, these calculations have been
programmed for interactive computation on
personal computers. The program NONLIN (4-

14) can be used to do this type of calculation and
to gain additional insight through the graphics
that are available. Using the program, the
maximum displacement ductility is calculated
to be 2.85, the maximum displacement is 8.4
inches, and the plastic displacement is 5.6 in. A
plot of the calculated time history of the
displacement, shown in Figure 4-10f, indicates

that structure reaches the maximum
displacement on the first cycle and that from
this time onward, it oscillates about a deformed
position of 5.6 inches which is the plastic
displacement. This can also be seen in a plot of
the force versus displacement, shown in Figure
4-10g which indicates a single yield excursion
followed by elastic oscillations about the
residual displacement of 5.6 inches.

Figure 4-10g. Computed force versus displacement.

Figure 4-10f. Computed displacement time history
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4.4.5 Approximate resopnse to impulse
loading

In order to develop a method for evaluating
the response of a structural system to a general
dynamic loading, it is convenient to first
consider the response of a structure to a  short-
duration impulse load as shown in Figure 4-
10h, If the duration of the applied impulse load,
t, is short relative to the fundamental period of
vibration of the structure, T, then the effect of
the impulse can be considered as an incremental
change in velocity. Using the impulse-
momentum relationship, which states that the
impulse is equal to the change in momentum,
the following equation is obtained:

∫=
t

dttp
m

tv
0

)(
1

)(& (4-26)

Following the application of the short-
duration impulse load, the system is in free
vibration and the response is given by Equation
4-19. Applying the initial conditions at the
beginning of the free vibration phase,

∫= 1

0 11 negligible)(,)(
1

)(
t

tvdttp
m

tv&

Figure 4-10h. Short duration rectangular impulse.

Equation 4-19 becomes

∫ −ω
ω

=− 1

0 11 )(sin)(
1

)(
t

ttdttp
m

ttv (4-27)

For a damped structural system, the free-
vibration response is given by Equation 4-22
Applying the above initial conditions to
Equation 4-22 results in the following equation
for the damped response:

)(sin

)(
1

)(

1

0

)(
1

1
1

tt

edttp
m

ttv

d

t tt

d

−ω×
ω

=− ∫ −ωλ−

(4-28)

4.4.6 Response to General Dynamic
Loading

The above discussion of the dynamic
response to a short-duration impulse load can
readily be expanded to produce an analysis
procedure for systems subjected to an arbitrary
loading time history. Any arbitrary time history
can be represented by a series of short-duration
impulses as shown in Figure 4-11. Consider one
of these impulses which begins at time ℑ  after
the beginning of the time history and has a
duration dτ. The magnitude of this differential
impulse is p(τ) dτ, and it produces a differential
response which is given as

ω
τ′ωτ=τ

m

dtp
dv

sin)(
)( (4-29)

The time variable t′  represents the free-
vibration phase following the differential
impulse loading and can be expressed as

τ−=′ tt (4-30)

Substituting this expression into Equation 4-
29 results in

ω
ττ−ωτ=τ

m

dtp
dv

)(sin)(
)( (4-31)

The total response can now be obtained by
superimposing the incremental responses of all
the differential impulses making up the time
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history. Integrating Equation 4-31, the total
displacement response becomes

∫ ττ−ωτ
ω

=
t

dtp
m

tv
0

)(sin)(
1

)( (4-32)

which is known as the Duhamel integral. When
considering a damped structural system, the
differential response is given by Equation 4-28
and the Duhamel integral solution becomes

∫
−

=
−−t

o d

d
t

m

dtep
tv

ω
ττωτ τλω )(sin)(

)(
)(

(4-33)

Figure 4-11. Differential impulse response.

Since the principle of superposition was
used in the derivation of Equations 4-32 and 4-
33, the results are only applicable to linear
structural systems. Furthermore, evaluation of

the integral will require the use of numerical
methods. For these two reasons, the use of a
direct numerical integration procedure may be
preferable for solving for the response of a
dynamic system subjected to general dynamic
load. This will be addressed in a later section on
nonlinear response analysis. However, the
Duhamel-integral result can be applied in a
convenient and systematic manner to obtain a
solution for the linear elastic structural response
for earthquake load.

4.4.7 Earthquake Response of Elastic
Structures

Time-History Response The response to
earthquake loading can be obtained directly
from the Duhamel integral if the time-
dependent force p(t) is replaced with the
effective time-dependent force Pe(t), which is
the product of the mass and the ground
acceleration. Making this substitution in
Equation 4-33 results in the following
expression for the displacement:

ω
= )(

)(
tV

tv (4-34)

where the response parameter V(t) represents
the velocity and is defined as

∫ ττ−ωτ= τ−ωλ−t

d
t dtegtV

0

)( )(sin)()( && (4-35)

The displacement of the structure at any
instant of time during the entire time history of
the earthquake under consideration can now be
obtained using Equation 4-34. It is convenient
to express the forces developed in the structure
during the earthquake in terms of the effective
inertia forces. The inertia force is the product of
the mass and the total acceleration. Using
Equation 4-11, the total acceleration can be
expressed as

)()()( tv
m

k
tv

m

c
tu −−= &&& (4-36)
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If the damping term can be neglected as
contributing little to the equilibrium equation,
the total acceleration can be approximated as

)()( 2 tvtu ω−=&& (4-37)

The effective earthquake force is then given as

)()( 2 tvmtQ ω= (4-38)

The above expression gives the value of the
base shear in a single-story structure at every
instant of time during the earthquake time
history under consideration. The overturning
moment acting on the base of the structure can
be determined by multiplying the inertia force
by the story height:

)()( 2 tvhmtM ω= (4-39)

Response Spectra Consideration of the
displacements and forces at every instant of
time during an earthquake time history can
require considerable computational effort, even
for simple structural systems. As mentioned
previously, for many practical problems and
especially for structural design, only the
maximum response quantities are required. The
maximum value of the displacement, as
determined by Equation 4-34, will be defined as
the spectral displacement

max)(tvSd = (4-40)

Substituting this result into Equations 4-38
and 4-39 results in the following expressions
for the maximum base shear and maximum
overturning moment in a SDOF system:

dSmQ 2
max ω= (4-41)

dShmM 2
max ω= (4-42)

An examination of Equation 4-34 indicates
that the maximum velocity response can be
approximated by multiplying the spectral
displacement by the circular frequency. This
response parameter is defined as the spectral
pseudovelocity and is expressed as

dpv SS ω= (4-43)

In a similar manner, Equation 4-37 indicates
that the maximum total acceleration can be
approximated as the spectral displacement
multiplied by the square of the circular
frequency. This product is defined as the
spectral pseudoacceleration and is expressed as

dpa SS 2ω= (4-44)

A plot of the spectral response parameter
against frequency or period constitutes the
response spectrum for that parameter. A
schematic representation of the computation of
the displacement spectrum for the north-south
component of the motion recorded at El Centro
on May 18, 1940 has been presented by
Chopra(4-1) and is shown in Figure 4-12.
Because the three response quantities are
related to the circular frequency, it is
convenient to plot them on a single graph with
log scales on each axis. This special type of plot
is called a tripartite log plot. The three response
parameters for the El Centro motion are shown
plotted in this manner in Figure 4-13. For a
SDOF system having a given frequency
(period) and given damping, the three spectral
response parameters for this earthquake can be
read directly from the graph.

Two types of tripartite log paper are used for
plotting response spectra. Note that on the
horizontal axis at the bottom of the graph in
Figure 4-13, the period is increasing from left to
right. For this reason, this type of tripartite log
paper is often referred to as period paper. A
similar plot of the response spectra for the El
Centro N-S ground motion is shown in Figure
4-14. Here it can be seen that frequency, plotted
on the horizontal axis, is increasing from left to
right. This type of tripartite paper is referred to
as frequency paper.
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Figure 4-12. Computation of deformation (or displacement) response spectrum. [After Chopra (4-1)].
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Figure 4-13. Typical tripartite response-spectra curves.
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Figure 4-14. Response spectra, El Centro earthquake, May 18,1940, north-south direction.

Figure 4-15. Site-specific response spectra.
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4.4.8 Design Response Spectra

Use of the elastic response spectra for a single
component of a single earthquake record

(Figure 4-13), while suitable for purposes of
analysis, is not suitable for purposes of design.
The design response spectra for a particular site
should not be developed from a single

Figure 4-16. Smoothed site-specific design spectra.
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acceleration time history, but rather should be
obtained from the ensemble of possible
earthquake motions that could be experienced
at the site. This should include the effect of
both near and distant earthquakes. Furthermore,
a single earthquake record has a particular
frequency content which gives rise to the
jagged, sawtooth appearance of peaks and
valleys shown in Figure 4-13. This feature is
also not suitable for design, since for a given
period, the structure may fall in a valley of the
response spectrum and hence be underdesigned
for an earthquake with slightly different
response characteristics. Conversely, for a small
change in period, the structure might fall on a
peak and be overdesigned. To alleviate this
problem the concept of the smoothed response
spectrum has been introduced for design.
Statistics are used to create a smoothed
spectrum at some suitable design level. The
mean value or median spectrum can generally
be used for earthquake-resistant design of
normal building structures. Use of this spectrum
implies there is a 50% probability that the
design level will be exceeded.

Structures that are particularly sensitive to
earthquakes or that have a high risk may be
designed to a higher level such as the mean plus
one standard deviation, which implies that the
probability of exceedance is only 15.9%.
Structures having a very high risk are often
designed for an enveloping spectrum which
envelopes the spectra of the entire ensemble of
possible site motions. Response spectra which
are representative of a magnitude-6.5
earthquake at a distance of 15 miles, developed
by the Applied Technology Council (4-2), are
shown in Figure 4-15. The corresponding
smoothed design spectra are shown in Figure 4-
16.

Newmark and Hall (4-3) have proposed a
method for constructing an elastic design
response spectrum in which the primary input
datum is the anticipated maximum ground
acceleration. The corresponding values for the
maximum ground velocity and the maximum
ground displacement are proportioned relative
to the maximum ground acceleration, which is

normalized to 1.0g. The maximum ground
velocity is taken as 48 in./sec, and the
maximum ground displacement is taken as 36
in. It should be noted that these values represent
motions which are more intense than those
normally considered for earthquake-resistant
design; however, they are approximately in the
correct proportion for earthquakes occurring on
competent soils and can be scaled for
earthquakes having lower ground acceleration.

Table 4-1. Relative values of spectrum amplification
factors (4-3).

Amplification factor for
Percentage
of critical
Damping Displacement Velocity Acceleration

0 2.5 4.0 6.4
0.5 2.2 3.6 5.8
1 2.0 3.2 5.2
2 1.8 2.8 4.3
5 1.4 1.9 2.6

10 1.1 1.3 1.5
20 1.0 1.1   1.2

Three principal regions of the response
spectrum are identified, in which the structural
response can be approximated as a constant,
amplified value. Amplification factors are
applied to the ground motions in these three
regions to obtain the design spectrum for a
SDOF elastic system. Based on a large data
base of recorded earthquake motions,
amplification factors which give a probability
of exceedance of about 10% or less are given in
Table 4-1 for various values of the structural
damping. The basic shape of the Newmark—
Hall design spectrum using the normalized
ground motions and the amplification factors
given in Table 4-1 for 5% damping is shown in
Figure 4-17. The displacement  region  is  the
low-frequency region with frequencies less than
0.33 Hz (periods greater than 3.0 sec). The
maximum displacement of the SDOF system is
obtained by multiplying the maximum ground
displacement by the displacement amplification
factor given in Table 4-1. The velocity region is
in the mid-frequency region between 0.33 Hz
(3.0 sec) and 2.0 Hz (0.5 sec). Maximum
velocities in this region are obtained by
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multiplying the maximum ground velocity by
the amplification factor for the velocity (Table
4-1). An amplified acceleration region lies
between 2.0 Hz (0.5 sec) and 6.0 Hz (0.17 sec).
The amplified response is obtained in the same
manner as in the previous two cases. Structures
having a frequency greater than 30 Hz (period
less than 0.033 sec) are considered to be rigid
and have an acceleration which is equal to the
ground acceleration. In the frequency range
between 6 Hz (0.17 sec) and 30 Hz (0.033 sec)
there is a transition region between the ground

acceleration and the amplified acceleration
region.

Similar design spectra corresponding to the
postulated ground motion presented in Figures
4-15 and 4-16 are shown in Figure 4-18. In
order to further define which response spectrum
should be used for design, it is necessary to
estimate the percentage of critical damping in
the structure. A summary of recommended
damping values for different types of structures
and different stress conditions is given in Table
4-2 as a guideline.

Figure 4-17. Basic New mark-Hall design spectrum normalized to 1.0g for 5% damping (4-3).
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Example 4-4 (Construction of a Newmark-
Hall Design Spectrum)

Construct a Newmark-Hall design spectrum
for a maximum ground acceleration of 0.2g,
and use it to estimate the maximum base shear
for the industrial building of Example 4-1.
Assume the damping is 5 percent of critical.

•Determine ground motion parameters:
ground acceleration = (1.0)(0.2) = 0.2g
ground velocity = (48.0)(0.2)=9.6in./sec.
ground displacement=(36.0)(0.2)=7.2 in.

•Amplified response parameters:
acceleration = (0.2)(2.6) = 0.52g

velocity = (9.6)(1.9) = 18.2 in./sec
displacement = (7.2)(1.4) = 10.0 in.

The constructed design spectrum is shown
in Figure 4-19.

From Example 4-1:
N-S:
T = 0.287 sec.
ω = 21.8 rad/sec,
f = 3.48 HZ

From the design spectrum for f = 3.48 Hz:
Sd=v(t)max =0.42 in.

Figure 4-18. A New mark-Hall design spectra.
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From Equation 4-42:

Qmax = (0.485)(21.8)2(0.42) = 96.8 kips
E-W:
T = 0.23 sec,
ω = 27.2 rad/sec,
From the design spectrum for f = 4.3 Hz:

Sd = 0.28 in.

From Equation 4-42:

Qmax=(0.485)(21.8)2(0.28) = 64.5 kips

Figure 4-19. Response spectrum of Example 4-3.

4.4 GENERALIZED-
COORDINATE APPROACH

Up to this point, the only structures which
have been considered are single-story buildings
which can be idealized as SDOF systems. The
analysis of most structural systems requires a
more complicated idealization even if the
response can be represented in terms of a single
degree of freedom. The generalized-coordinate
approach provides a means of representing the
response of more complex structural systems in
terms of a single, time-dependent coordinate,
known as the generalized coordinate.

Displacements in the structure are related to
the generalized coordinate as

)()(),( tYxtxv φ= (4-45)

Where Y(t) is the time-dependent
generalized coordinate and )(xφ  is a spatial
shape function which relates the structural
degrees of freedom, v(x, t), to the generalized
coordinate. For a generalized SDOF system, it
is necessary to represent the restoring forces in
the damping elements and the stiffness
elements in terms of the relative velocity and
relative displacement between the ends of the
element:

)()(),( tYxtxv && φ∆=∆ (4-46)

Table 4-2 Recommended Damping Values (4-3)
Stress level Type and condition of

structure
Percentage
of critical
damping

Stress level Type and condition of
structure

Percentage
of critical
damping

Working
stress,<1/2
yield point

Vital piping
Welded steel, prestressed
concrete, well-reinforced
concrete(only slight cracking)

1-2
2-3

At or just
below yield
point

Vital piping
Welded steel, prestressed
concrete(without complete
loss in prestress)

2-3
5-7

Reinforced concrete with
considerable cracking

3-5 Prestressed concrete with
no prestress left

7-10

Bolted and / or riveted steel,
wood structures with nailed
or bolted joints.

5-7 Bolted and / or riveted
steel, wood structures with
nailed or bolted joints.

10-15

Wood structures with
nailed joints

15-20
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)()(),( tYxtxv φ∆=∆ (4-47)

Most structures can be idealized as a vertical
cantilever, which limits the number of
displacement functions that can be used to
represent the horizontal displacement. Once the
displacement function is selected, the structure
is constrained to deform in that prescribed
manner. This implies that the displacement
functions must be selected carefully if a good
approximation of the dynamic properties and
response of the system are to be obtained. This
section will develop the equations for
determining the generalized response
parameters in terms of the spatial displacement
function and the physical response parameters.
Methods for determining the shape function
will be discussed, and techniques for
determining the more correct displacement
function for a particular structure will be
presented.

4.4.1 Displacement Functions and
Generalized Properties

Formulation of the equation of motion in
terms of a generalized coordinate will be
restricted to systems which consist of an
assemblage of lumped masses and discrete
elements. Lateral resistance is provided by
discrete elements whose restoring force is
proportional to the relative displacement
between the ends of the element. Damping
forces are proportional to the relative velocity
between the ends of the discrete damping
element. Formulation of the equation of motion
for systems having distributed elasticity is
described by Clough and Penzien. (4-4) The
general equation of dynamic equilibrium is
given in Equation 4-6, which represents a
system of forces which are in equilibrium at
any instant of time. The principle of virtual
work in the form of virtual displacements states
that

If a system of forces which are in
equilibrium is given a virtual displacement
which is consistent with the boundary
conditions, the work done is zero.

Applying this principle to Equation 4-6
results in an equation of virtual work in the
form

0)( =−∆+∆+ vtpvfvfvf sdi δδδδ (4-48)

where it is understood that ),( txvv =  and that
the virtual displacements applied to the
damping force and the elastic restoring force
are virtual relative displacements. The virtual
displacement can be expressed as

)()(),( tYxtxv δφ=δ (4-49)

and the virtual relative displacement can be
written as

)()(),( tYxtxv δφ∆=∆δ (4-50)

where

)()()()()()(),( tYxtYxtYxtxv ji φ∆=φ−φ=∆

The inertia, damping and elastic restoring
forces can be expressed as

Ykvkf

Ycvcf

Ymvmf

s

d

i
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φ∆=∆=

φ==
&&&

&&&&

(4-51)

Substituting Equations 4-49, 4-50, and 4-51
into Equation 4-48 results in the following
equation of motion in terms of the generalized
coordinate:

)(**** tpYkYcYm =++ &&& (4-52)

where m*, c*, k*, and p* are referred to as the
generalized parameters and are defined as
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For a time-dependent base acceleration the
generalized force becomes

Lgp &&=* (4-54)

where

factor ionparticipat earthquake=

φ= ∑
i

iimL
(4-55)

It is also convenient to express the
generalized damping in terms of the percent of
critical damping in the following manner:

ωλ=φ∆= ∑ *2* 2)( micc
i

i (4-56)

Where ω represents the circular frequency
of the generalized system and is given as

*

*

m

k=ω (4-57)

The effect of the generalized-coordinate
approach is to transform a multiple-degree-of-
freedom dynamic system into an equivalent
single-degree-of-freedom system in terms of the
generalized coordinate. This transformation is
shown schematically in Figure 4-20. The degree
to which the response of the transformed
system represents the actual system will depend
upon how well the assumed displacement shape
represents the dynamic displacement of the
actual structure. The displacement shape
depends on the aspect ratio of the structure,
which is defined as the ratio of the height to the
base dimension. Possible shape functions for
high-rise, mid-rise, and low-rise structures are
summarized in Figure 4-21. It should be noted
that most building codes use the straight-line
shape function which is shown for the mid-rise
system. Once the dynamic response is obtained
in terms of the generalized coordinate, Equation
4-45 must be used to determine the
displacements in the structure, and these in turn

Figure 4-20. Generalized single-degree-of-freedom system.
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can be used to determine the forces in the
individual structural elements.

In principle, any function which represents
the general deflection characteristics of the
structure and satisfies the support conditions
could be used. However, any shape other than
the true vibration shape requires the addition of
external constraints to maintain equilibrium.
These extra constraints tend to stiffen the
system and thereby increase the computed
frequency. The true vibration shape will have
no external constraints and therefore will have
the lowest frequency of vibration. When
choosing between several approximate
deflected shapes, the one producing the lowest
frequency is always the best approximation. A
good approximation to the true vibration shape
can be obtained by applying forces representing
the inertia forces and letting the static
deformation of the structure determine the
spatial shape function.

Example 4-5 (Determination of generalized
parameters)

Considering the four-story, reinforced-
concrete moment frame building shown in
Figure 4-22, determine the generalized mass,
generalized stiffness, and fundamental period of
vibration in the transverse direction using the
following shape functions:

(a) )2/sin()( Lxx π=φ  and (b)

Lxx /)( =φ .All beams are 12in.× 20 in.,

and all columns are 14 in× 14 in. cf ′ =4000

psi, and the modulus of elasticity of

concrete is 6106.3 × psi. Reinforcing steel
is made of grade-60 bars. Floor weights
(total dead load) are assumed to be 390 kips
at the roof, 445 kips at the fourth and third
levels, and 448 kips at the first level. Live
loads are 30 psf at the roof and 80 psf per
typical floor level.

Figure 4-22. Building of Example 4-5.

Assuming beams are rigid relative to
columns (Figure 4-23),

Figure 4-21. Possible shape functions based on aspect ratio.
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Figure 4-23. Assumed shape of column deformation.
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Calculating generalized properties (see
Figure 4-24):

(a) Assuming )2/sin()( Lxx π=φ :

Level K M φi ∆φi 2
iM φ 2

iK φ∆

4 0.252 1.000 0.252
209 0.071 1.054

3 0.288 0.929 0.249
209 0.203 8.613

2 0.288 0.726 0.152
209 0.306 19.570

1 0.290 0.420 0.051
140 0.420 24.696

M* = 0.704        K* = 53.933

sec72.0

secrad/75.8
704.0

93.53
*

*

=

===

aTand
m

kω

(b) Assuming Lxx /)( =φ

Level K M φi ∆φi 2
iM φ 2

iK φ∆

4 0.252 1.000 0.252
209 0.241 12.139

3 0.288 0.759 0.166
209 0.242 12.240

2 0.288 0.517 0.077
209 0.241 12.139

1 0.290 0.276 0.022
140 0.276 10.665

M* = 0.517 K* = 47.183

.sec66.0 andrad/sec55.9
517.0

183.47
*

*

==

==ω

bT
m

k

Since )2/sin()(, LxxTT ba π=φ>  is a

better approximation to the deflected shape
than Lxx /)( =φ

4.4.2 Rayleigh’s Method

Rayleigh’s method is a procedure developed
by Lord Rayleigh (4-5) for analyzing vibrating
systems using the law of conservation of
energy. Its principal use is for
determining an accurate approximation of the
natural frequency of a structure. The success of
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the technique in accomplishing this has been
recognized by most building codes, which have
adopted the procedure as an alternative for
estimating the fundamental period of vibration.
In addition to providing an estimate of the
fundamental period, the procedure can also be
used to estimate the shape function φ (x).

In an undamped elastic system, the
maximum potential energy can be expressed in
terms of the external work done by the applied
forces. In terms of a generalized coordinate this
expression can be written as

22
)(

*

max

Yp
p

Y
PE ii =φ= ∑ (4-58)

Similarly, the maximum kinetic energy can
be expressed in terms of the generalized
coordinate as

22
)(

*22
2

22

max

mY
m

Y
KE

i
ii

ω=φω= ∑ (4-59)

According to the principle of conservation
of energy for an undamped elastic system, these
two quantities must be equal to each other and
to the total energy of the system. Equating

Equation 4-58 to Equation 4-59 results in the
following expression for the circular frequency:

Ym

p
*

*

=ω (4-60)

Substituting this result into Equation 4-20
for the period results in

*

*

2
p

Ym
T π= (4-61)

Multiplying the numerator and denominator
of the radical by Y and using Equation 4-45
results in the expression for the fundamental
period:

∑
∑π=

ii

i ii

vpg

vw
T

2

2 (4-62)

which is the expression found in most building
codes.

The forces which must be applied laterally
to obtain either the shape function φ (x) or the
displacement v(x) represent the inertia forces,
which are the product of the mass and the
acceleration. If the acceleration is assumed to
vary linearly over the height of a building with

Figure 4-24. Development of a generalized SDOF model for building of Example 4-4.
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uniform weight distribution, a distribution of
inertia force in the form of an inverted triangle
will be obtained, being maximum at the top and
zero at the bottom. This is similar to the
distribution of base shear used in most building
codes and can be a reasonable one to use when
applying the Rayleigh method. The resulting
deflections can be used directly in Equation 4-
62 to estimate the period of vibration or they
can be normalized in terms of the generalized
coordinate (maximum displacement) to obtain
the spatial shape function to be used in the
generalized-coordinate method.

Example 4-6 (Application of Rayleigh’s
Method)

Use Rayleigh’s method to determine the
spatial shape function and estimate the
fundamental period of vibration in the
transverse direction for the reinforced-concrete
building given in Example 4-4.

We want to apply static lateral loads that are
representative of the inertial loads on the
building. Since the story weights are
approximately equal, it is assumed that the
accelerations and hence the inertial loads vary
linearly from the base to the roof (see Figure 4-
25).

Note that the magnitude of loads is
irrelevant and is chosen for ease of
computation. The following computations (on
the bottom of this page) are a tabular solution of
Equation 4-61.

*

*

2
p

Ym
T π= ,     or

sec712.0
912.16

)3343.0)(666.0(
2 =π=T

Note that since T = 0.721 is greater than
either of the periods calculated in Example 4-5,

the deflected shape given by applying the static
loads is a better approximation than either of
the two previous deflected shapes.

Figure 4-25.Frame of Example 4-5.

4.4.3 Earthquake Response of Elastic
Structures

Time-History Analysis Substituting the
generalized parameters of Equations 4-53 and
4-54 into the Duhamel-integral solution,
Equation 4-33, results in the following solution
for the displacement:

ω
φ=

*

)()(
),(

m

tVx
txv

L
(4-63)

Using Equation 4-37, the inertia force at any
position x above the base can be obtained from

Level K m P V ∆=V/k v φ 2
iim φ Pi φi

4 0.252 8.0 0.3343 1.000 0.252 8.000
209 8 0.0383

3 0.288 6.0 0.2960 0.886 0.226 5.316
209 14 0.0670

2 0.288 4.0 0.2290 0.685 0.135 2.740
209 18 0.0861

1 0.288 2.0 0.1429 0.428 0.053 0.856
140 20 0.1429 0.000 0.000 0.666 16.912
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),()(),()(),( 2 txvxmtxvxmtxq ω== && (4-64)

which, using Equation 4-63, becomes

*

)()()(
),(

m

tVxxm
txq

ωφ= L
(4-65)

The base shear is obtained by summing the
distributed inertia forces over the height H of
the structure:

∫ ω== )(),()(
*

2

tV
m

dxtxqtQ
L

(4-66)

The above relationships can be used to
determine the displacements and forces in a
generalized SDOF system at any time during
the time history under consideration.

Response-Spectrum Analysis
The maximum value of the velocity given

by Equation 4-35 is defined as the spectral
pseudovelocity (Spv), which is related to the
spectral displacement (Sd) by Equation 4-43.
Substituting this value into Equation 4-63
results in an expression for the maximum
displacement in terms of the spectral
displacement:

*max

)(
)(

m

Sx
xv dLφ= (4-67)

The forces in the system can readily be
determined from the inertia forces, which can
be expressed as

max
2

maxmax )()()()()( xvxmxvxmxq ω== &&

(4-68)

Rewriting this result in terms of the spectral
pseudo-acceleration (Spa) results in the
following:

*max

)()(
)(

m

Sxmx
xq paLφ

= (4-69)

Of considerable interest to structural
engineers is the determination of the base shear.
This is a key parameter in determining seismic
design forces in most building codes. The base
shear Q can be obtained from the above
expression by simply summing the inertia
forces and using Equation 4-55:

*

2

max m

S
Q paL

= (4-70)

It is also of interest to express the base shear
in terms of the effective weight, which is
defined as

∑
∑

φ

φ
=

i ii

ii i

w

w
W

2

2

*
)(

(4-71)

The expression for the maximum base shear
becomes

gSWQ pa /*
max = (4-72)

This form is similar to the basic base-shear
equation used in the building codes. In the code
equation, the effective weight is taken to be
equal to the total dead weight W, plus a
percentage of the live load for special
occupancies. The seismic coefficient C is
determined by a formula but is equivalent to the
spectral pseudoacceleration in terms of g. The
basic code equation for base shear has the form

CWQ =max (4-73)

The effective earthquake force can also be
determined by distributing the base shear over
the story height. This distribution depends upon
the displacement shape function and has the
form

L
ii

i

m
Qq

φ= max (4-74)

If the shape function is taken as a straight
line, the code force distribution is obtained. The
overturning moment at the base of the structure
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can be determined by multiplying the inertia
force by the corresponding story height above
the base and summing over all story levels:

∑=
i

iiO qhM (4-75)

Example 4-7 (Spectrum Analysis of
Generalized SDOF System)

Using the design spectrum given in Figure
4-26, the shape function determined in Example
4-6, and the reinforced-concrete moment frame
of Example 4-5, determine the base shear in the
transverse direction, the corresponding
distribution of inertia forces over the height of
the structure, and the resulting overturning
moment about the base of the structure.

rad/sec.8.715

Hz,39.1/1sec.,721.0

=ω
=== TfT

From the design spectrum Spa = 0.185g.

Level mi φi 2
iim φ miφi miφi/L qmax Vmax

4 0.252 1.000 0.252 0.252 0.305 27.10

27.10

3 0.288 0.866 0.226 0.255 0.308 27.36

54.46

2 0.288 0.685 0.135 0.197 0.238 21.14

75.60

1 0.288 0.428 0.053 0.123 0.149 13.24

0.666 0.827 88.84

Figure 4-26. Design spectrum for Example 4-6.

From Equation 4-66,

kips84.88
666.0

)4.386)(185.0()827.0( 2

max ==Q

The overturning moment is: (see Fig, 4-27)

Figure 4-27. Story shears and overturning moment
(Example 4-6)

kipsft2716

)12(24.13)5.22(14.21

)33(36.27)5.43(10.27

−=
+

++=oM

The displacement is

dd SSmv αφ=ϕφ= *)/(max

where
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4.5 RESPONSE OF
NONLINEAR SDOF
SYSTEMS

In an earlier section it was shown that the
response of a linear structural system could be
evaluated using the Duhamel integral. The
approach was limited to linear systems because
the Duhamel-integral approach makes use of
the principle of superposition in developing the
method. In addition, evaluation of the Duhamel
integral for earthquake input motions will
require the use of numerical methods in
evaluating the integral. For these reasons it may
be more expedient to use numerical integration
procedures directly for evaluating the response
of linear systems to general dynamic loading.
These methods have the additional advantage
that with only a slight modification they can be
used to evaluate the dynamic response of
nonlinear systems. Many structural systems will
experience nonlinear response sometime during
their life. Any moderate to strong earthquake
will drive a structure designed by conventional
methods into the inelastic range, particularly in
certain critical regions. A very useful numerical
integration technique for problems of structural
dynamics is the so called step-by-step
integration procedure. In this procedure the
time history under consideration is divided into
a number of small time increments ∆ t. During
a small time step, the behavior of the structure
is assumed to be linear. As nonlinear behavior
occurs, the incremental stiffness is modified. In
this manner, the response of the nonlinear
system is approximated by a series of linear
systems having a changing stiffness. The

velocity and displacement computed at the end
of one time interval become the initial
conditions for the next time interval, and hence
the process may be continued step by step.

4.5.1 Numerical Formulation of
Equation of Motion

This section considers SDOF systems with
properties m, c, k(t) and p(t), of which the
applied force and the stiffness are functions of
time. The stiffness is actually a function of the
yield condition of the restoring force, and this
in turn is a function of time. The damping
coefficient may also be considered to be a
function of time; however, general practice is to
determine the damping characteristics for the
elastic system and to keep these constant
throughout the complete time history. In the
inelastic range the principle mechanism for
energy dissipation is through inelastic
deformation, and this is taken into account
through the hysteretic behavior of the restoring
force.

The numerical equation required to evaluate
the nonlinear response can be developed by first
considering the equation of dynamic
equilibrium given previously by Equation 4-6.
It has been stated previously that this equation
must be satisfied at every increment of time.
Considering the time at the end of a short time
step, Equation 4-6 can be written as

)()()()( ttpttfttfttf sdi ∆+=∆++∆++∆+
(4-76)

where the forces are defined as
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(4-77)

and in the case of ground accelerations
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)()()( ttgmttpttp e ∆+−=∆+=∆+ && (4-78)

Substituting Equations 4-77 and 4-78 into
Equation 4-76 results in an equation of motion
of the form

)()()( ttgmvkttvcttvm ii ∆+−=∆+∆++∆+ ∑ &&&&&

(4-79)

It should be noted that the incremental
stiffness is generally defined by the tangent
stiffness at the beginning of the time interval

dv

df
k s

i = (4-80)

In addition, the dynamic properties given in
Equations 4-77 and 4-78 can readily be
exchanged for the generalized properties when
considering a generalized SDOF system.

4.5.2 Numerical Integration

Many numerical integration schemes are
available in the literature. The technique
considered here is a step-by-step procedure in
which the acceleration during a small time
increment is assumed to be constant. A slight
variation of this procedure, in which the
acceleration is assumed to vary linearly during
a small time increment, is described in detail by
Clough and Penzien.(4-4). Both procedures have
been widely used and have been found to yield
good results with minimal computational effort.

If the acceleration is assumed to be constant
during the time interval, the equations for the
constant variation of the acceleration, the linear
variation of the velocity and the quadratic
variation of the displacement are indicated in
Figure 4-28. Evaluating the expression for
velocity and displacement at the end of the time
interval leads to the following two expressions
for velocity and displacement:

Figure 4-28. Increment motion (constant acceleration).
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Solving Equation 4-82 for the acceleration
)( ttv ∆+&&  gives

)()(
44

)(
2

tvtv
t

v
t

ttv &&&&& −
∆

−∆
∆

=∆+ (4-83)

which can be written as
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where
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tvttvv

&&& −
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−=

−∆+=∆

Note that this equation expresses the
acceleration at the end of the time interval as a
function of the incremental displacement and
the acceleration and velocity at the beginning of
the time interval. Substituting Equation 4-83
into Equation 4-81 gives the following
expression for the velocity at the end of the
time increment:

)(
2

)( tvv
t

ttv && −∆
∆

=∆+ (4-85)

which can be written as

)(
2

)( tBv
t

ttv +∆
∆

=∆+& (4-86)

where

)()( tvtB &−=

It is convenient to express the damping as a
linear function of the mass:

ωλ=λ=α= mCmc cr 2 (4-87)

Use of this equation allows the
proportionality factor α to be expressed as

λω=α 2 (4-88)

Substituting Equations 4-85, 4-86, and 4-88
into Equation 4-79 results in the following form
of the equation for dynamic equilibrium:
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Moving terms containing the response
conditions at the beginning of the time interval
to the right-hand side of the equation results in
the following so-called pseudo-static form of
the equation of motion:

)()( ttpvk t ∆+=∆ (4-90)
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The solution procedure for a typical time
step is as follows:

1. Given the initial conditions at the beginning
of the time interval, calculate the
coefficients A(t) and B(t).

2. Calculate the effective stiffness.
3. Determine the effective force.
4. Solve for the incremental displacement

tkpv /= (4-91)

5. Determine the displacement, velocity and
acceleration at the end of the time interval:
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∆+=∆+

&&

& (4-92)

6. The values given in Equation 4-92 become
the initial conditions for the next time
increment, and the procedure is repeated.
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The above algorithm can be easily
programmed on any microcomputer. If it is
combined with a data base of recorded
earthquake data such as EQINFOS,(4-6) it can be
used to gain considerable insight into the linear
and nonlinear response of structures that can be
modeled as either a SDOF system or as a
generalized SDOF system. It also forms the
background material for later developments for
multiple-degree-of-freedom systems.

An important response parameter that is
unique to nonlinear systems is the ductility
ratio. For a SDOF system, this parameter can be
defined in terms of the displacement as

yield)(

plastic)(
0.1

yield)(

(max)

v

v

v

v +==µ (4-93)

As can be seen from the above equation, the
ductility ratio is an indication of the amount of
inelastic deformation that has occurred in the
system. In the case of a SDOF system or
generalized SDOF system the ductility obtained
from Equation 4-93 usually represents the
average ductility in the system. The ductility
demand at certain critical regions, such as
plastic hinges in critical members, may be
considerably higher.

4.6 MULTIPLE-DEGREE-OF-
FREEDOM SYSTEMS

In many structural systems it is impossible
to model the dynamic response accurately in
terms of a single displacement coordinate.
These systems require a number of independent
displacement coordinates to describe the
displacement of the mass of the structure at any
instant of time.

4.6.1 Mass and Stiffness Properties

In order to simplify the solution it is usually
assumed for building structures that the mass of
the structure is lumped at the center of mass of
the individual story levels. This results in a

diagonal matrix of mass properties in which
either the translational mass or the mass
moment of inertia is located on the main
diagonal.
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(4-94)

It is also convenient for building structures
to develop the structural stiffness matrix in
terms of the stiffness matrices of the individual
story levels. The simplest idealization for a
multistory building is based on the following
three assumptions: (i) the floor diaphragm is
rigid in its own plane; (ii) the girders are rigid
relative to the columns and (iii) the columns are
flexible in the horizontal directions but rigid in
the vertical. If these assumptions are used, the
building structure is idealized as having three
dynamic degrees of freedom at each story level:
a translational degree of freedom in each of two
orthogonal directions, and a rotation about a
vertical axis through the center of mass. If the
above system is reduced to a plane frame, it
will have one horizontal translational degree of
freedom at each story level. The stiffness
matrix for this type of structure has the
tridiagonal form shown below:

For the simplest idealization, in which each
story level has one translational degree of
freedom, the stiffness terms ki in the above
equations represent the translational story
stiffness of the ith story level. As the
assumptions given above are relaxed to include
axial deformations in the columns and flexural
deformations in the girders, the stiffness term ki

in Equation 4-95 becomes a submatrix of
stiffness terms, and the story displacement vi



4. Dynamic Response of Structures 223

becomes a subvector containing the various
displacement components in the particular story
level. The calculation of the stiffness
coefficients for more complex structures is a
standard problem of static structural analysis.
For the purposes of this chapter it will be
assumed that the structural stiffness matrix is
known.

4.6.2 Mode Shapes and Frequencies

The equations of motion for undamped free
vibration of a multiple-degree-of-freedom
(MDOF) system can be written in matrix form
as

}0{}]{[}]{[ =+ vKvM && (4-96)

Since the motions of a system in free
vibration are simple harmonic, the displacement
vector can be represented as

tvv ω= sin}{}{ (4-97)

Differentiating twice with respect to time
results in

}{}{ 2 vv ω−=&& (4-98)

Substituting Equation 4-98 into Equation 4-
96 results in a form of the eigenvalue equation,

( ) }0{}{][][ 2 =ω− vMK (4-99)

The classical solution to the above equation
derives from the fact that in order for a set of
homogeneous equilibrium equations to have a
nontrivial solution, the determinant of the
coefficient matrix must be zero:

}0{])[]det([ 2 =ω− MK (4-100)

Expanding the determinant by minors
results in a polynomial of degree N, which is
called the frequency equation. The N roots of
the polynomial represent the frequencies of the
N modes of vibration. The mode having the
lowest frequency (longest period) is called the
first or fundamental mode. Once the
frequencies are known, they can be substituted
one at a time into the equilibrium Equation 4-
99, which can then be solved for the relative
amplitudes of motion for each of the
displacement components in the particular
mode of vibration. It should be noted that since
the absolute amplitude of motion is
indeterminate, N-1 of the displacement
components are determined in terms of one
arbitrary component.

This method can be used satisfactorily for
systems having a limited number of degrees of
freedom. Programmable calculators have
programs for solving the polynomial equation
and for doing the matrix operations required to
determine the mode shapes. However, for
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problems of any size, digital computer
programs which use numerical techniques to
solve large eigenvalue systems(4-7) must be
used.

Example 4-8 (Mode Shapes and Frequencies)
It is assumed that the response in the

transverse direction for the reinforced-concrete
moment frame of Example 4-4 can be
represented in terms of four displacement
degrees of freedom which represent the
horizontal displacements of the four story
levels. Determine the stiffness matrix and the
mass matrix, assuming that the mass is lumped
at the story levels. Use these properties to
calculate the frequencies and mode shapes of
the four-degree-of-freedom system.

•Stiffness and mass matrices: The stiffness
coefficient ijk is defined as the force at
coordinate i due to a unit displacement at
coordinate j, all other displacements being zero
(see Figure 4-29):

where B = ω2/800
•Characteristic equation:
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•Mode shapes (see Figure 4-29) are
obtained by substituting the values of Bi, one at
a time, into the equations

}0{}]){[]([ 2 =ω− vMK

and determining N-1 components of the
displacement vector in terms of the first
component, which is set equal to unity. This
results in the modal matrix
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Solution of the above problem using the
computer program ETABS (4-12) gives the
following results:
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This program assumes the floor diaphragm
is rigid in its own plane but allows axial
deformation in the columns and flexural
deformations in the beams. Hence, with these
added degrees of freedom (fewer constraints)
the fundamental period increases. However,
comparing the results of this example with
those of Example 4-5, it can be seen that for
this structure a good approximation for the first-
mode response was obtained using the
generalized SDOF model and the static
deflected shape.

Figure 4-29. Stiffness determination and mode
shape(Example 4-8).

4.6.3 Equations of Motion in Normal
Coordinates

Betti’s reciprocal work theorem can be used
to develop two orthogonality properties of
vibration mode shapes which make it possible
to greatly simplify the equations of motion. The
first of these states that the mode shapes are
orthogonal to the mass matrix and is expressed
in matrix form as

)(}0{}]{[}{ nmM m
T

n ≠=φφ (4-101)

Using Equations 4-99 and 4-101, the second
property can be expressed in terms of the
stiffness matrix as

)(}0{}]{[}{ nmK m
T

n ≠=φφ (4-102)

which states that the mode shapes are
orthogonal to the stiffness matrix. It is further
assumed that the mode shapes are also
orthogonal to the damping matrix:

)(}0{}]{[}{ nmC m
T

n ≠=φφ (4-103)

Sufficient conditions for this assumption
have been discussed elsewhere.(4-8) Since any
MDOF system having N degrees of freedom
also has N independent vibration mode shapes,
it is possible to express the displaced shape of
the structure in terms of the amplitudes of these
shapes by treating them as generalized
coordinates (sometimes called normal
coordinates). Hence the displacement at a
particular location, vi, can be obtained by
summing the contributions from each mode as

∑
=

φ=
N

n
nini Yv

1

(4-104)

In a similar manner, the complete
displacement vector can be expressed as
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(4-105)

It is convenient to write the equations of
motion for a MDOF system in matrix form as

)}({}]{[}]{[}]{[ tPvKvCvM =++ &&& (4-106)

which is similar to the equation for a SDOF
system, Equation 4-9. The differences arise
because the mass, damping, and stiffness are
now represented by matrices of coefficients
representing the added degrees of freedom, and
the acceleration, velocity, displacement, and
applied load are represented by vectors
containing the additional degrees of freedom.
The equations of motion can be expressed in
terms of the normal coordinates by substituting
Equation 4-105 and its appropriate derivatives
into Equation 4-106 to give

)}({}]{][[}]{][[}]{][[ tPYKYCYM =Φ+Φ+Φ &&&

(4-107)

Multiplying the above equation by the
transpose of any modal vector {φn} results in
the following:
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Φφ+Φφ &&&
(4-108)

Using the orthogonality conditions of
Equations 4-101, 4-102, and 4-103 reduces this
set of equations to the equation of motion for a
generalized SDOF system in terms of the
generalized properties for the n th mode shape
and the normal coordinate Yn:

)(**** tPYKYCYM nnnnnn =++ &&& (4-109)

where the generalized properties for the nth
mode are given as
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The above relations can be used to further
simplify the equation of motion for the nth
mode to the form

*

*
2 )(

2
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nnnnnn M

tP
YYY =ω+ωλ+&& (4-111)

The importance of the above
transformations to normal coordinates has been
summarized by Clough and Penzien,(4-4) who
state that

The use of normal coordinates serves to
transform the equations of motion from a set of
N simultaneous differential equations which are
coupled by off diagonal terms in the mass and
stiffness matrices to a set of N independent
normal coordinate equations.

It should further be noted that the
expressions for the generalized properties of
any mode are equivalent to those defined
previously for a generalized SDOF system.
Hence the use of the normal modes transforms
the MDOF system having N degrees of freedom
into a system of N independent generalized
SDOF systems. The complete solution for the
system is then obtained by superimposing the
independent modal solutions. For this reason
this method is often referred to as the modal-
superposition method. Use of this method also
leads to a significant saving in computational
effort, since in most cases it will not be
necessary to use all N modal responses to
accurately represent the response of the
structure. For most structural systems the lower
modes make the primary contribution to the
total response. Therefore, the response can
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usually be represented to sufficient accuracy in
terms of a limited number of modal responses
in the lower modes.

4.6.4 Earthquake-Response Analysis

Time-History Analysis As in the case of
SDOF systems, for earthquake analysis the
time-dependent force must be replaced with the
effective loads, which are given by the product
of the mass at any level, M, and the ground
acceleration g(t). The vector of effective loads
is obtained as the product of the mass matrix
and the ground acceleration:

)(}]{[)( tgMtPe &&Γ= (4-112)

where {Γ} is a vector of influence coefficients
of which component i represents the
acceleration at displacement coordinate i due to
a unit ground acceleration at the base. For the
simple structural model in which the degrees of
freedom are represented by the horizontal
displacements of the story levels, the vector
{Γ} becomes a unity vector, {1}, since for a
unit ground acceleration in the horizontal
direction all degrees of freedom have a unit
horizontal acceleration. Using Equation 4-108,
the generalized effective load for the nth mode
is given as

)()(* tgtP nen L= (4-113)

Where }]{[}{ Γφ= MT
nnL

Substituting Equation 4-113 into Equation
4-111 results in the following expression for the
earthquake response of the nth mode of a
MDOF system:

*2 /)(2 nnnnnnnn MtgYYY &&&&& ϕ=ω+ωλ+ (4-114)

In a manner similar to that used for the
SDOF system, the response of this mode at any

time t can be obtained by the Duhamel integral
expression

nn

nn
n M

tV
tY

ω
ϕ=

*

)(
)( (4-115)

where Vn(t) represents the integral

∫ ττ−ωτ= τ−ωλ−t
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)( )(sin)()( && (4-116)

The complete displacement of the structure
at any time is then obtained by superimposing
the contributions of the individual modes using
Equation 4-105
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n
nn tYtYtv

1

)}(]{[)(}{)}({ (4-117)

The resulting earthquake forces can be
determined in terms of the effective
accelerations, which for each mode are given
by the product of the circular frequency and the
displacement amplitude of the generalized
coordinate:
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ωϕ=ω=&& (4-118)

The corresponding acceleration in the
structure due to the n th mode is given as

)(}{)}({ tYtv nenne
&&&& φ= (4-119)

and the corresponding effective earthquake
force is given as

*/)(}]{[
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(4-120)

The total earthquake force is obtained by
superimposing the individual modal forces to
obtain
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The base shear can be obtained by summing
the effective earthquake forces over the height
of the structure:
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where *2 / nnen MM L= is the effective mass for

the nth mode.
The sum of the effective masses for all of

the modes is equal to the total mass of the
structure. This results in a means of
determining the number of modal responses
necessary to accurately represent the overall
structural response. If the total response is to be
represented in terms of a finite number of
modes and if the sum of the corresponding
modal masses is greater than a predefined
percentage of the total mass, the number of
modes considered in the analysis is adequate. If
this is not the case, additional modes need to be
considered. The base shear for the nth mode,
Equation 4-122, can also be expressed in terms
of the effective weight,Wen, as
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The base shear can be distributed over the
height of the building in a manner similar to
Equation 4-74, with the modal earthquake
forces expressed as
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φ= (4-125)

4.6.5 Response-Spectrum Analysis

The above equations for the response of any
mode of vibration are exactly equivalent to the
expressions developed for the generalized
SDOF system. Therefore, the maximum
response of any mode can be obtained in a
manner similar to that used for the generalized
SDOF system. By analogy to Equations 4-34
and 4-43 the maximum modal displacement can
be written as
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Making this substitution in Equation 4-115
results in

*
max / ndnnn MSY ϕ= (4-127)

The distribution of the modal displacements
in the structure can be obtained by multiplying
this expression by the modal vector

*maxmax
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The maximum effective earthquake forces
can be obtained from the modal accelerations as
given by Equation 4-120:

*max
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Summing these forces over the height of the
structure gives the following expression for the
maximum base shear due to the nth mode:

*2
max / npannn MSQ ϕ= (4-130)
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which can also be expressed in terms of the
effective weight as

gSWQ panenn /max = (4-131)

where Wen is defined by Equation 4-124.
Finally, the overturning moment at the base of

the building for the nth mode can be
determined as

[ ]{ } */ npannno MSMhM Lφ= (4-132)

where h  is a row vector of the story heights

above the base.

4.6.6 Modal Combinations

Using the response-spectrum method for
MDOF systems, the maximum modal response
is obtained for each mode of a set of modes,
which are used to represent the response. The
question then arises as to how these modal
maxima should be combined in order to get the
best estimate of the maximum total response.
The modal-response equations such as
Equations 4-117 and 4-121 provide accurate
results only as long as they are evaluated
concurrently in time. In going to the response-
spectrum approach, time is taken out of these
equations and replaced with the modal maxima.
These maximum response values for the
individual modes cannot possibly occur at the
same time; therefore, a means must be found to
combine the modal maxima in such a way as to
approximate the maximum total response. One
such combination that has been used is to take
the sum of the absolute values (SAV) of the
modal responses. This combination can be
expressed as
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n
nrr

1

(4-133)

Since this combination assumes that the
maxima occur at the same time and that they
also have the same sign, it produces an upper-
bound estimate for the response, which is too
conservative for design application. A more
reasonable estimate, which is based on
probability theory, can be obtained by using the
square-root-of-the-sum-of-the-squares (SRSS)
method, which is expressed as
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2 (4-134)

This method of combination has been shown
to give a good approximation of the response
for two-dimensional structural systems. For
three-dimensional systems, it has been shown
that the complete-quadratic-combination (CQC)
method (4-9) may offer a significant
improvement in estimating the response of
certain structural systems. The complete
quadratic combination is expressed as
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where for constant modal damping
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Using the SRSS method for two-
dimensional systems and the CQC method for
either two- or three-dimensional systems will
give a good approximation to the maximum
earthquake response of an elastic system
without requiring a complete time-history
analysis. This is particularly important for
purposes of design.
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Example 4-9 (Response Spectrum Analysis)
Use the design response spectrum given in

Example 4-7 and the results of Example 4-8 to
perform a response-spectrum analysis of the
reinforced concrete frame. Determine the modal
responses of the four modes of vibration, and
estimate the total response using the SAV,
SRSS, and CQC methods of modal
combination. Present the data in a tabular form
suitable for hand calculation. Finally, compare
the results with those obtained in Example 4-6
for a generalized SDOF model.

From Example 4-7,
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Table 3-3. Computation of response for model of Example 4-8
Modal Modal Response
Param

eter
n = 1 2 3 4

ω = 8.44 25.77 40.39 50.80
αn = 1.212 -0.289 0.075 0.010
Sd = 1.190 0.155 0.062 0.039

1.00 1.00 1.00 1.00
0.91 0.20 -1.07 -1.78

Response 0.74 -0.78 -0.75 1.75 Combined Response
Quantity

φ = 

0.47 -1.05 1.24 -0.92 SAV SRSS CQC
Displacement n = 4 1.44 -0.045 0.019 -0.002 1.506 1.441 1.441
vn=φnαnSdn 3 1.31 -0.009 -0.020 0.003 1.342 1.310 1.310
(Eq.3.128) 2 1.07 0.035 -0.014 -0.003 1.122 1.071 1.071

1 0.68 0.047 0.023 0.001 0.751 0.682 0.682

Acceleration n= 4 102.6 -29.9 31.0 -5.1 168.6 111.4 110.7

nvnnv 2ω=&& 3 93.3 -6.0 -32.6 7.7 139.6 99.3 98.9

2 76.2 23.2 -22.8 -7.7 129.9 83.2 83.3
1 48.4 31.2 37.5 2.6 119.7 68.8 70.0

Inertia force n = 4 25.91 -7.54 7.83 -1.30 42.6 28.1 27.9

nvMnq &&= 3 26.82 -1.72 -9.38 2.23 40.2 28.6 28.4

2 21.91 6.68 -6.56 -2.23 37.4 23.9 23.9
1 14.03 9.05 11.35 0.75 35.2 20.2 20.6

Shear n= 4 25.91 -7.54 7.83 -1.30 42.6 28.1 28.0
Qn=Σqn 3 52.73 -9.26 -1.55 0.93 64.5 53.6 53.5

2 74.64 -2.58 -8.11 -1.30 86.6 75.1 75.1
1 88.67 6.47 3.24 -0.55 98.9 89.0 89.0

Overturning n= 4 272.1 -79.2 82.2 -13.7 447.2 295.4 293.6
Moment 3 825.7 -176.4 65.9 -3.9 1071.9 846.9 845.3
(ft-kips) 2 1609.4 -203.5 -19.2 -17.5 1849.6 1622.4 1621.3

1 2673.4 -125.9 19.7 -24.1 2843.1 2676.5 2675.7
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From Equation 4-128,
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The computation of the modal and the
combined response is tabulated in Table 4-
3. The results are compared with those
obtained for the SDOF model in Table 4-4.

Table 4-4. Comparison of results obtained from MDOF
and SDOF models.

Response
parameter

MDOF
(Example 3-9)

SDOF
(Example 3-7)

Period (sec) 0.744 0.721
Displacements(in)
Roof
3rd

2nd

1.44
1.31
1.07

1.17
1.04
0.80

Response
parameter

MDOF
(Example 3-9)

SDOF
(Example 3-7)

1st 0.68 0.50
Inertia force (kips)
Roof
3rd

2nd

1st

28.1
28.6
23.9
20.2

27.1
27.4
21.1
13.2

Base shear (kips) 89.0 88.8
Overturning
moment
    (ft-kips)

2678 2716

4.7 NONLINEAR RESPONSE
OF MDOF SYSTEMS

The nonlinear analysis of buildings modeled
as multiple degree of freedom systems (MDOF)
closely parallels the development for single
degree of freedom systems presented earlier.
However, the nonlinear dynamic time history
analysis of MDOF systems is currently
considered to be too complex for general use.
Therefore, recent developments in the seismic
evaluation of buildings have suggested a
performance-based procedure which requires
the determination of the demand and capacity.
Demand is represented by the earthquake
ground motion and its effect on a particular
structural system. Capacity is the structure's
ability to resist the seismic demand. In order to
estimate the structure's capacity beyond the
elastic limit, a static nonlinear (pushover)
analysis is recommended (4-17). For more
demanding investigations of building response,
nonlinear dynamic analyses can be conducted.

For dynamic analysis the loading time
history is divided into a number of small time
increments, whereas, in the static analysis, the
lateral force is divided into a number of small
force increments. During a small time or force
increment, the behavior of the structure is
assumed to be linear elastic. As nonlinear
behavior occurs, the incremental stiffness is
modified for the next time (load) increment.
Hence, the response of the nonlinear system is
approximated by the response of a sequential
series of linear systems having varying
stiffnesses.
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Static Nonlinear Analysis
Nonlinear static analyses are a subset of

nonlinear dynamic analyses and can use the
same solution procedure without the time
related inertia forces and damping forces. The
equations of equilibrium are similar to Equation
4-1 with the exception that they are written in
matrix form for a small load increment during
which the behavior is assumed to be linear
elastic.

}{}]{[ PvK ∆=∆ (4-136a)

For computational purposes it is convenient
to rewrite this equation in the following form

}{}{}]{[ PRvK tt =+∆ (4-136b)

where Kt is the tangent stiffness matrix for
the current load increment and Rt is the
restoring force at the beginning of the load
increment which is defined as
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Figure 4-29a. Pushover Curve, Six Story Steel Building.

The lateral force distribution is generally
based on the static equivalent lateral forces
specified in building codes which tend to

approximate the first mode of vibration. These
forces are increased in a proportional manner
by a specified load factor. The lateral loading is
increased until either the structure becomes
unstable or a specified limit condition is
attained. The results from this type of analysis
are usually presented in the form of a graph
plotting base shear versus roof displacement.
The pushover curve for a six-story steel
building (4-18) is shown in Figure 4-29a and the
sequence of plastic hinging is shown in Figure
4-29b.

Figure 4-29b Sequence of Plastic Hinge Formation, Six
Story Steel Building.

The equations of equilibrium for a multiple
degree of freedom system subjected to base
excitation can be written in matrix form as

)(}]{[

}]{[}]{[}]{[
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vKvCvM

&&

&&&

Γ−=
++

(Eq.4-137)

This equation is of the same form as that of
Eq. 4-76 for the single degree of freedom
system. The acceleration, velocity and
displacement have been replaced by vectors
containing the additional degrees of freedom.
The mass has been replaced by the mass matrix
which for a lumped mass system is a diagonal
matrix with the translational mass and
rotational mass terms on the main diagonal. The
incremental stiffness has been replaced by the
incremental stiffness matrix and the damping
has been replaced by the damping matrix. This
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latter term requires some additional discussion.
In the mode superposition method, the damping
ratio was defined for each mode of vibration.
However, this is not possible for a nonlinear
system because it has no true vibration modes.
A useful way to define the damping matrix for a
nonlinear system is to assume that it can be
represented as a linear combination of the mass
and stiffness matrices of the initial elastic
system

][][][ KMC β+α= (Eq 4-138)

Where α and β are scaler multipliers which
may be selected so as to provide a given
percentage of critical damping in any two
modes of vibration of the initial elastic system.
These two multipliers can be evaluated from the
expression
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112 (Eq.4-139)

where ωi and ωj are the percent of critical
damping in the two specified modes. Once the
coefficients α and β are determined, the
damping in the other elastic modes is obtained
from the expression

22
k

k
k

βω+
ω
α=λ (Eq. 4-140)

A typical damping function which was used
for the nonlinear analysis of a reinforced
concrete frame (4-10) is shown in Figure 4-30.
Although the representation for the damping is
only approximate it is justified for these types
of analyses on the basis that it gives a good
approximation of the damping for a range of
modes of vibration and these modes can be
selected to be the ones that make the major
contribution to the response. Also in nonlinear
dynamic analyses the dissipation of energy
through inelastic deformation tends of
overshadow the dissipation of energy through

viscous damping. Therefore, an exact
expresentation of damping is not as important
in a nonlinear system as it is in a linear system.
One should be aware of the characteristics  of
the  damping  function to insure that important
components of the response are not lost. For
instance, if the coefficients are selected to give
a desired percentage of critical damping in the
lower modes and the response of the higher
modes is important, the higher mode response
may be over damped and its contribution to the
total response diminished.

Figure 4-30. Damping functions for a framed tube.

Substituting Eq. 4-138 into Eq. 4-137 results
in

)(}]{[
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(Eq. 4-141)

where Ki refers to the initial stiffness.
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Representing the incremental stiffness in
terms of the tangent stiffness, Kt, and
rearranging some terms, results in

}]{[}{}]{[}]{[ vKRvKvK ttt ∆+=∆= (Eq. 4-142)
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Using the step-by-step integration procedure
in which the acceleration is assumed to be
constant during a time increment, equations
similar to Eqs. 4.84 and 4-86 can be developed
for the multiple degree of freedom system
which express the acceleration and velocity
vectors at the end of the time increment in
terms of the incremental displacement vector
and the vectors of initial conditions at the
beginning of the time increment:
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}{)}({)}({ vttvtv ∆+∆−= (Eq. 4-144a)

where
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)}({}{ ttvBt ∆−−= & (Eq. 4-146)

Substituting Eqs. 4-142 through 4-146 into
Eq. 4-141 and rearranging some terms leads to
the pseudo-static form
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The incremental displacement vector can be
obtained by solving Eq. 4-147 for {∆v} This
result can then be used in Eqs. 4-143, 4-144 and
4-144a to obtain the acceleration vector, the
velocity vector and the displacement vector at
the end of the time interval. These vectors then
become the initial conditions for the next time
interval and the process is repeated.

Output from a nonlinear response analysis
of a MDOF system generally includes response
parameters such as the following: an envelope
of the maximum story displacements, an
envelope of the maximum relative story
displacement divided by the story height
(sometimes referred to as the interstory drift
index (IDI), an envelope of maximum ductility
demand on structural members such as beams,
columns, walls and bracing, an envelope of
maximum rotation demand at the ends of
members, an envelope of the maximum story
shear, time history of base shear, moment
versus rotation hysteresis plots for critical
plastic hinges, time history plots of story
displacements and time history plots of energy
demands (input energy, hysteretic energy,
kinetic energy and dissapative energy).

For multiple degree of freedom systems, the
definition of ductility is not as straight-forward
as it was for the single degree of freedom
systems. Ductility may be expressed in terms of
such parameters as displacement, relative
displacement, rotation, curvature or strain.
Example 4-10.Seismic Response Analyses

The following is a representative response
analysis for a six story building in which
the lateral resistance is provided by moment
resistant steel frames on the perimeter. The
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structure has a rectangular plan with typical
dimensions of 48822 ′×′ as shown in
Figure 4-31. The building was designed for
the requirements of the 1979 Edition of the
Uniform Building Code (UBC) with the
seismic load based on the use of static
equivalent lateral forces.

Elastic Analyses
As a first step in performing the analyses,

the members of the perimeter frame will be
stress checked for the design loading conditions
and the dynamic properties of the building will
be determined. This will help to insure that the
analytical model of the building is correct and
that the gravity loading which will be used for
the nonlinear response analysis is also
reasonable. This will be done using a three
dimensional model of the lateral force system
and the ETABS (4-11) computer program. This
program is widely used on the west coast for
seismic analysis and design of building
systems. An isometric view of the perimeter
frame including the gravity load is shown in
Figure 4-32. The location of the concentrated
and distributed loads depends upon the framing
system shown in Figure 4-31.

Using the post-processor program
STEELER (4-12), the lateral force system is stress
checked using the AISC-ASD criteria. The
stress ratio is calculated as the ratio of the
actual stress in the member to the allowable
stress. Applying the gravity loads in
combination with the static equivalent lateral
forces in the transverse direction produces the
stress ratios shown in Figure 4-33. This result
includes the effect of an accidental  eccentricity
which is 5% of the plan dimension. The
maximum stress ratio in the columns is 0.71
and the maximum in the beams is 0.92. These
values are reasonable based on standard
practice at the time the building was designed.
Ideally, the stress ratio should be just less than
one, however, this is not always possible due to
the finite number of steel sections that are
available.
Modal analyses indicate that the first three
lateral modes of vibration in each direction

represent more than 90% of the participating
mass. In the transverse direction, these modes
have periods of vibration of 1.6, 0.6 and 0.35
seconds. In the longitudinal direction, the
periods are slightly shorter.

Dynamic analyses are conducted using the
same analytical model and considering an
ensemble of five earthquake ground motions
recorded during the Northridge earthquake. A
representative time history of one of these
motions is shown in Figure 4-34. The
corresponding stress ratios in the perimeter
frame are shown in Figure 4-35 for earthquake
motion applied in the transverse direction.
Stress ratios in the beams of the transverse
frames range from 2.67 to 4.11 indicating
substantial inelastic behavior. Stress ratios in
excess of 1.12 are obtained in all of the
columns of the transverse frames, however, it
should be recalled that there is a factor of safety
of approximately 1.4 on allowable stress and
plastic hinging.

Nonlinear Analyses
In order to estimate the lateral resistance of

the building at ultimate load, a static, nonlinear
analysis (pushover) is conducted for
proportional loading. The reference lateral load
distribution is that specified in the 1979 UBC.
This load distribution is then multiplied by a
load factor to obtain the ultimate load. The
nonlinear model is a two dimensional model in
which the plasticity is assumed to be
concentrated in plastic hinges at the ends of the
members.

The results of the pushover analysis are
usually represented in terms of a plot of the roof
displacement versus the base shear as shown in
Figure 4-36. This figure indicates that first
yielding occurs at a base shear of approximately
670 kips and a roof displacement of
approximately 7.25 inches. The UBC 1979
static equivalent lateral forces for this frame
results in a base shear of 439 kips which
implies a load factor of 1.52 on first yield. At a
roof displacement of 17.5 inches, a sway
mechanism forms with all girders hinged and



Figure 4-31 Typical floor framing plan ~ Fourth & fifth floors



Figure 4-32. Gravity Loading Pattern, ETABS



Figure 4-33. Calculated Stress Ratios, Design Loads, ETABS



Figure 4-34. Recorded Base Acceleration, Sta. 322, N-S
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Figure 4-35. Calculated Stress Ratios, Sta. 322 Ground Motion



Figure 4-36. Static Pushover Curve

hinges at the base of the columns. At this
displacement, the pushover curve is becoming
almost horizontal indicating a loss of most of
the lateral stiffness. This behavior is
characterized by a large increase in
displacement for a small increase in lateral load
since lateral resistance is only due to strain
hardening in the plastic hinges. The ultimate
load is taken as 840 kips which divided by the
code base shear for the frame (439 kips) results
in a load factor of 1.91 on ultimate.

Note that the elastic dynamic analysis for
the acceleration shown in Figure 4-34 results in
a displacement at the roof of 16.7 inches.
Comparing this to the pushover curve (Figure
4-36) indicates that the structure should be well
into the inelastic range based on the
displacement response.

Figure 4-37. Calculated Nonlinear Dynamic Response.
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The nonlinear dynamic response of a
structure is often presented in terms of the
following response parameters: (1) envelope of
maximum total displacement, (2) envelope
of maximum story to story displacement
divided by the story height (interstory drift
index), (3) maximum ductility demand for the
beams and columns, (4) envelopes of maximum
plastic hinge rotation, (5) moment versus
rotation hysteresis curves for critical members
and (6) envelopes of maximum story shear.
Representative plots of four of these parameters
are shown in Figure 4-37. The lateral
displacement envelope (Figure 4-37a) indicates
that the maximum displacement at the roof
level is 12.3 inches which is less than the 16.7
inches obtained from the elastic dynamic
analysis. The interstory drift and total beam
rotation curves are shown in Figure 4- 37b
which indicates that the interstory drift ranges
from 0.01 (1%) to 0.024 (2.4%). The beam
rotation can be seen to range between 0.016 and
0.025. The curvature ductility demands of the
beams and columns is shown in Figure 4-37c.

The maximum ductility demand for the
columns is 1.8 and for the beams it is 3.3. The
hysteretic behavior of a plastic hinge in a
critical beam is shown in a plot of moment
versus rotation in Figure 4- 37d.

A final plot, Figure 4-38, shows the
nonlinear displacement time history of the roof.
This figure illustrates the displacement of a
pulse type of input. After some lessor cycles
during the first 7 seconds of the time history,
the structure sustains a strong displacement at
approximately 8 seconds which drives the roof
to a displacement of 12 inches relative to the
base. Note the acceleration pulse at this time in
the acceleration time history (Figure 4-34).
Following this action, the structure begins to
oscillate about a new, deformed position at four
inches displacement. This is a residual
displacement, which the structure will have
following the earthquake and is characteristic of
inelastic behavior. Additional details of this
analysis example can be found in the literature
(4-13).

Figure4-38. Nonlinear Displacement, Roof Level



4. Dynamic Response of Structures 243

4.8 VERIFICATION  OF
CALCULATED RESPONSE

The dynamic response procedures discussed
in the previous sections must have the ability to
reliably predict the dynamic behavior of
structures when they are subjected to critical
seismic excitations. Hence, it is necessary to
compare the results of analytical calculations
with the results of large-scale experiments. The
best large-scale experiment is when an
earthquake occurs and properly placed
instruments record the response of the building
to ground motions recorded at the base. The
instrumentation (accelerometers) placed in a
six-story reinforced concrete building by the
California Strong Motion Instrumentation
Program (CSMIP) is indicated in Figure 4-39.
The lateral force framing system for the

building, shown in Figure 4-40, indicates that
there are three moment frames in the transverse
(E-W) direction and two moment frames in the
longitudinal (N-S) direction. Note that the
transverse frames at the ends of the building are
not continuous with the longitudinal frames. It
is assumed that the floor diaphragms are rigid
in their own plane. During the Loma Prieta
earthquake the instrumentation recorded
thirteen excellent records of building response
having a duration of more than sixty seconds (4-

19). Since the response was only weakly
nonlinear, the calculations can be made using
the ETABS program, however, similar analyses
can also be conducted with a nonlinear response
program (4-20).

Figure 4-39. Location of Strong Motion Instrumentation
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Figure 4-40. ETABS Building Model

To improve the evaluation of the recorded
response, spectral analyses are conducted in
both the time domain (response spectra) and
frequency domain (Fourier spectra). A further
refinement of the Fourier analysis can be
attained by calculating a Fourier amplitude
spectra for a segment (window) of the recorded
time history. The fixed duration window is then
shifted along the time axis and the process is

repeated until the end of the time history record.
This results in a “moving window Fourier
amplitude spectra” (MWFAS) which indicates
the changes in period of the building response
during the time history as shown in Figure 4-41.
In this example a ten-second window was used
with a five-second shift for the first sixty
seconds of the recorded response. In general,
the length of the “window” should be at least
2.5 times the fundamental period of the
structure.

If the connections (offsets) are assumed to be
rigid, the initial stiffness of the building prior to
any cracking of the concrete can be estimated
using the analytical model with member
properties of the gross sections. This results in a
period of 0.71 seconds in the E-W direction and
0.58 seconds in the N-S direction. This
condition can also be evaluated by the results
obtained from the initial window of the
MWFAS. An examination of Figure 4-41
indicates an initial period of 0.71 in the E-W
direction and 0.58 seconds in the N-S direction.
Identical results were also obtained from
ambient vibration tests conducted by Marshall,
et al. (4-21).

Figure 41. Variation of Building Period with Time
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During the strong motion portion of the
response, cracking in the concrete and limited
yielding of the tension steel will cause the
period of vibration to lengthen. In order to
represent this increased flexibility in the elastic
analytical model, the flexibility of the
individual members can be reduced to an
effective value or the rigid offsets at the
connections (4-13) can be reduced in length. For
this example, the rigid offsets were reduced by
fifty percent. This results in a period of 1.03
seconds in the E-W direction and 0.89 seconds
in the N-S direction which are in the range of
values obtained from the MWFAS. Considering
the entire duration of the recorded response, the
Fourier amplitude spectra indicates a period of
1.05 seconds in the E-W direction and 0.85 in
the N-S direction. Corresponding values
obtained from a response spectrum analysis

indicate 1.0 E-W and 0.90 N-S. It can be
concluded that for this building, all of these
values are in good agreement. The MWFAS
also indicate an increase in period of
approximately fifty percent in both principal
directions during the earthquake. This amount
of change is not unusual for a reinforced
concrete building (4-22), however, it does indicate
cracking and possible limited yielding of the
reinforcement. The time histories of the
acceleration and displacement at the roof level
are shown in Figure 4-42. This also shows a
good correlation between the measured and the
calculated response.

Figure 4-42. Time History Comparisons of Acceleration, Displacement
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