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Chapter 7

Design for Drift and Lateral Stability

Farzad Naeim, Ph. D., S.E.
Vice President and Director of Research and Development, John A. Martin & Associates, Los Angeles, California.
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Abstract: This chapter deals with the problems of drift and lateral stability of building structures. Design for drift and
lateral stability is an issue that should be addressed in the early stages of design development. In many cases,
especially in tall buildings or in cases where torsion is a major contributor to structural response, the drift
criteria can become a governing factor in selection of the proper structural system. The lateral displacement
or drift of a structural system under wind or earthquake forces, is important from three different
perspectives: 1) structural stability; 2) architectural integrity and potential damage to various non-structural
components; and 3) human comfort during, and after, the building experiences these motions. In design of
building structures, different engineers attribute various meanings to the term "stability". Here, we consider
only those problems related to the effects of deformation on equilibrium of the structure, as stability
problems. Furthermore, we will limit the discussion to the stability of the structure as a whole. Local
stability problems, such as stability of individual columns or walls, are discussed in Chapters 9, 10, and 11
of the handbook. Several practical methods for inclusion of stability effects in structural analysis as well as
simplified drift design procedures are presented. These approximate methods can be valuable in evaluation
of the potential drift in the early stages of design.  Numerical examples are provided to aid in understanding
the concepts, and to provide the reader with the "hands-on" experience needed for successful utilization of
the material in everyday design practice.
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7.1 INTRODUCTION

This chapter deals with the problems of drift
and lateral stability of building structures.
Design for drift and lateral stability is an issue
which should be addressed in the early stages of
design development. In many cases, especially
in tall buildings or in cases where torsion is a
major contributor to structural response, the
drift criteria can become a governing factor in
selection of the proper structural system.

In design of building structures, different
engineers attribute various meanings to the term
"stability"(7-1). Here, we consider only those
problems related to the effects of deformation
on equilibrium of the structure, as stability
problems. Furthermore, we will limit the
discussion to the stability of the structure as a
whole. Local stability problems, such as
stability of individual columns or walls, are
discussed in Chapters 9, 10, and 11 of the
handbook.

The concerns that have resulted in code
requirements for limiting lateral deformation of
structures are explained in Section 7.2. The
concept of lateral stability, its relationship to
drift and the P-Delta effect, and factors
affecting lateral stability of structures are
discussed in Section 7.3.

Several practical methods for inclusion of
stability effects in structural analysis are
presented in Section 7.4. Simplified drift design
procedures are presented in Section 7.5. These
approximate methods can be valuable in
evaluation of the potential drift in the early
stages of design.

Section 7.6 covers the drift and P-Delta
analysis requirements of major United States
seismic design codes.

Several numerical examples are provided to
aid in understanding the concepts, and to
provide the reader with the "hands-on"
experience needed for successful utilization of
the material in everyday design practice.

The relative lateral displacement of
buildings is sometimes measured by an overall
drift ratio or index, which is the ratio of
maximum lateral displacement to the height of

the building. More commonly, however, an
interstory drift ratio, angle, or index is used,
which is defined as the ratio of the relative
displacement of a particular floor to the story
height at that level (see Figure 7-1). In this
chapter, unless otherwise noted, the term drift
means the relative lateral displacement between
two adjacent floors, and the term drift index, is
defined as the drift divided by the story height.

Figure 7-1. Definition of drift.

7.2 THE NEED FOR DRIFT
DESIGN

The lateral displacement or drift of a
structural system under wind or earthquake
forces, is important from three different
perspectives: 1) structural stability; 2)
architectural integrity and potential damage to
various non-structural components; and 3)
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human comfort during, and after, the building
experiences these motions.

7.2.1 Structural Stability

Excessive and uncontrolled lateral
displacements can create severe structural
problems. Empirical observations and
theoretical dynamic response studies have
indicated a strong correlation between the
magnitude of interstory drift and building
damage potential(7-2). Scholl(7-3) emphasizing the
fact that the potential for drift related damage is
highly variable, and is dependent on the
structural and nonstructural detailing provided
by the designer, has proposed the following
generalization of damage potential in
relationship to the interstory drift index δ:
1. at δ = 0.001 ; nonstructural damage is

probable
2. at δ = 0.002 ; nonstructural damage is likely
3. at δ = 0.007 ; nonstructural damage is

relatively certain and structural damage is
likely

4. at δ = 0.015 ; nonstructural damage is
certain and structural damage is likely
Drift control requirements are included in

the design provisions of most building codes.
However, in most cases, the codes are not
specific about the analytical assumptions to be
used in the computation of the drifts.
Furthermore, most of the codes are not clear
about how the magnifying effects of stability
related displacements ,such as P-delta
deformations, are to be incorporated in
evaluation of final displacements and
corresponding member forces.

7.2.2 Architectural Integrity

Architectural systems and components, and
a variety of other non-structural items in a
building, constitute a large portion of the total
investment in the project. In many cases the
monetary value of these items exceeds the cost
of the structural system by a large margin. In
addition, these non-structural items can be
potential sources of injury, and even loss of life,

for building occupants and those who are in the
vicinity of the building. Past earthquakes have
proven that non-structural components can also
greatly influence the seismic response of the
building. Chapter 13 of the handbook is
devoted to this important aspect of seismic
design.

7.2.3 Human Comfort

Human comfort and motion perceptibility,
which are of importance in the design of
structures for wind induced motions, are
relatively insignificant in seismic design, where
the primary objective is to limit damage and
prevent loss of life. For very essential
structures, where continued operation of
facilities is desired during and immediately
after an earthquake, a more conservative design
or application of special techniques, such as
seismic isolation (see Chapter 14), may be
considered. However, here again, the primary
goal is to keep the system operational, and to
prevent damage, rather than to provide for
comfort of the occupants during strong ground
motion.

Some investigators have studied the
behavior of building occupants during strong
ground motions (7-4, 7-5, 7-6). Such studies can
provide owners, architects, and hazard
mitigation authorities, with valuable guidelines
for considering these human factors in
planning, design, and operation of building
structures.

7.3 DRIFT, P-DELTA, AND
LATERAL STABILITY

7.3.1 The Concept of Lateral Stability

To illustrate the concept of stability,
consider an ideal column without geometrical
or material imperfections. Furthermore, assume
that there are no lateral loads, and that the
column remains elastic regardless of the force
magnitude. If the axial force is slowly
increased, the column will undergo axial
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deformation, and no lateral displacements will
occur. However, when the applied forces reach
a certain magnitude called the critical load (Pcr),
significant lateral displacements may be
observed.

Figure 7-2. Structural stability of an idealized column and
a real frame.

Figure 7-2a shows the load-deflection
behavior of this ideal column. It is important to
notice that when the magnitude of axial force
exceeds Pcr, there are two possible paths of
equilibrium: one along the original path, with
no lateral displacements, and one with lateral
displacements. However, equilibrium along the
original path is not stable, and any slight
disturbance can cause a change in the
equilibrium position and significant lateral
displacements. The force Pcr is called the
bifurcation load or first critical load of the
system. For this ideal column reaching the
bifurcation point does not imply failure simply
because it was assumed that it will remain

elastic regardless of the deflection magnitude.
However, in a real column, such large
deformations can cause yielding, stiffness
reduction, and failure. In a structural system,
buckling of critical members and the
corresponding large lateral displacements, can
cause a major redistribution of forces and
overall collapse of the system.

It is important to note that the bifurcation
point, exists only for perfectly symmetric
members under pure axial forces. If the same
ideal column is simultaneously subjected to
lateral loads, or if asymmetry of material or
geometric imperfections are present, as they are
in any real system, lateral displacements would
be observed from very early stages of loading.

When a frame under constant gravity load is
subjected to slowly increasing lateral loads, the
lateral displacement of the system slowly
increases, until it reaches a stage that in order to
maintain static equilibrium a reduction in the
gravity or lateral loads is necessary (Figure 7-
2b). This corresponds to the region with
negative slope on the force-displacement
diagram. If the loads are not reduced, the
system will fail.

When the same frame is subjected to
earthquake ground motion, reaching the
negative slope region of the load-displacement
diagram, does not necessarily imply failure of
the system (see Figure 7-3). In fact, it has been
shown that in the case of repeated loads with
direction reversals, such as those caused by
earthquake ground motion, the load capacity of
the system will be significantly larger than the
stability load for the same system subjected to
uni-directional monotonic loads(7-1, 7-8). Perhaps
this is one reason for scarcity of stability-caused
building failures during earthquakes.

Exact computation of critical loads, for real
buildings, is a formidable task. This is true even
in a static environment, let alone the added
complexities of dynamic loading and inelastic
response. Exact buckling analysis is beyond the
capacity and resources of a typical design
office, and beyond the usual budget and time-
frame allocated for structural analysis of
buildings.
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In everyday structural analysis, the stability
effects are accounted for either by addressing
the problem at the element level (via effective
length factors), or by application of one of the
various P-Delta analysis methods.

Figure 7-3. A typical load-displacement curve for a frame
under constant gravity load and reversing lateral load.

The simplest way to minimize lateral
stability problems is to limit the expected lateral

displacement or drift of the structure. In fact
several studies(7-9, 7-10, 7-11, 7-12) have shown that
by increasing lateral stiffness, the critical load
of the building will increase and the chances of
stability problems are reduced. Drift limitations
are imposed by seismic design codes primarily
to serve this purpose.

7.3.2 P-Delta Analysis

For most practical purposes, an accurate
estimate of the stability effects may be obtained
by what is commonly referred to as P-delta
analysis.

Overall stability failures of structures have
not been common during past earthquakes.
However, with the continuing trend towards
lighter structural systems, and recent
discoveries about the nature of near-field
ground motion(7-13, 7-14, 7-15), the second-order
effects are beginning to receive more attention.
It is believed that, in most cases, observance of
proper drift limitations will provide the
necessary safeguard against the overall lateral

Figure 7-4. Applied loads in the undeformed and deformed states.
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stability failure of the structure.

Figure 7-5. The P-delta effect. (a) Equilibrium in the
under formed state. (b) Immediate P-delta effect, (c)
Accumulation of the P-delta effect.

In conventional first-order structural
analysis, the equilibrium equations are
formulated for the undeformed shape of the
structure. However, when a structure undergoes
deformation, it carries the applied loads into a
deformed state along with it (Fig. 7-4). The

changes in position of the applied forces are
cumulative in nature and cause additional
second-order forces, moments, and
displacements which are not accounted for in a
first-order analysis. Studies(7-16) have shown that
the single most important second-order effect is
the P-delta effect. Figure 7-5 illustrates the P-
delta effect on a simple cantilever column.

In some cases, stability or second-order
effects are small and can be neglected.
However, in many other cases such as tall
buildings, systems under significant gravity
loads, soft-story buildings, or systems with
significant torsional response, the second-order
effects may be quite significant and hence,
should be considered in the structural analysis.

Although it is true that ignoring second-
order effects is not likely to result in overall
stability failure of typical buildings subjected to
earthquake ground motion, these effects can
frequently give rise to a series of premature
material failures at the level of forces, that
would seem safe by a first-order analysis.
Strong evidence relating excessive drift to
seismic damage during earthquakes, supports
this point.

Figure 7-6. Plan of the 24 story structure (7-17).
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7.3.3 Factors Affecting Lateral Stability

In general, the magnitude of the gravity
loads and factors that increase lateral
displacement, affect lateral stability of the
structure. Chief among these factors are rotation
at the base of the structure(7-12), any significant
rotation at any level above the base (as that
caused by formation of plastic hinges in the
columns or walls), and significant asymmetry
or torsion in the structure.

Figure 7-7. Elevation of the 24 story structure (7-17).

Wynhoven and Adams(7-17) studied the
effects of asymmetry and torsion on the
ultimate load carrying capacity of a 24 story
frame-shear wall building with typical plan and
elevation layouts as shown in Figures 7-6 and
7-7. The behavior of individual members was
idealized as elastic-perfectly plastic. To
consider the influence of torsion on the load

carrying capacity of the structure, two
asymmetric models were constructed by
moving the shear-wall couple from grid lines
three and four, to grid lines four and five in one
model, and to grid lines five and six in another
model. Load-displacement diagrams for the
three configurations are shown in Figure 7-8,
where λ is the ratio of the ultimate lateral loads
to the working stress lateral loads. Gravity
loads were not changed. Reduction in the
ultimate lateral load carrying capacity due to
induced asymmetry proved to be drastic (51%
in one case and 66% in the other case).

Figure 7-8. Load-displacement relationships for various
configurations of the 24 story structure (7-17).

7.4 PRACTICAL SECOND-
ORDER ANALYSIS
TECHNIQUES

7.4.1 The Effective Length Factor
Method

This method is an attempt to reduce the
complex problem of overall frame stability to a
relatively simple problem of elastic stability of
individual columns with various end conditions.
The role of the effective length factor K, is to
replace an actual column of length L and
complex end conditions to an equivalent
column of length KL with both ends pinned, so
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that the classic Euler buckling equation can be
used to examine column stability. It is further
assumed that if the buckling stability of each
individual column has been verified by this
method, then a system instability will not occur.

Figure 7-9. Beam-column models used in the
development of the effective length factor equations.

The general equations for effective length
factors are derived from the elastic stability
analysis of simple beam-column models such as
those shown in Figure 7-9. These equations are
(7-18):
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where GA and GB are the relative rotational
stiffness of the beams to the columns, measured
at ends A and B of the column under
consideration:
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Graphical solutions to these equations are
given by the well known SSRC alignment
charts(7-19) shown in Figure 7-10. The SSRC
Guide(7-19) recommends that for pinned column
bases, G be taken as 10, and for column bases
rigidly attached to the foundation, the value of
G be taken as unity. Furthermore, when certain
conditions are known to exist at the far end of a
beam, the corresponding beam stiffness term in
Equation 7-3 should be multiplied by a factor.
For the sidesway-prevented case, this factor is
1.5 for the far end hinged and 2.0 for the far end
fixed. For the sidesway-permitted case this
factor is 0.5 for the far end hinged and 0.67 for
the far end fixed. Effective length factors have
been incorporated in the column design
interaction equations of several building design
codes.

The effective-length-factor method has been
subjected to serious criticism by various
researchers. The main criticism is that the
effective length factor method, which is based
on elastic stability analysis of highly idealized
cases, can not be trusted to provide reasonable
estimates of the stability behavior of real
structural systems. Furthermore, several studies
have shown that the lateral stability of a frame,
or individual story, is controlled by the
collective behavior of all the columns in the
story, rather than the behavior of a single
column. Hence, if a stability failure is to occur,
the entire story must fail as a unit(7-12).

Examples and evidence of the shortcomings
of the effective length factor method have been
documented, among others, by MacGregor and
Hage(7-16) and Choeng-Siat-Moy(7-20, 7-21). In
spite of this evidence, the effective length factor
method has continued to survive as a part of the
requirements of many building codes. Recently,
new editions of some building codes are
moving away from this tradition.
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7.4.2 Approximate Buckling Analysisa

In approximate buckling analysis, the
buckling load of a single story, or that of the
structure as a whole, is estimated. A
magnification factor µ, which is a function of
the ratio of the actual gravity load to the
buckling load, is defined, and for the design of
structural members, all lateral load effects are
multiplied by this magnification factor. Then,
member design is performed by assuming an
effective length factor of one.

a Parts of section 7.4.2 have been extracted from
Reference 6-22 with permission from Van Nostrand
Reinhold Company.

Several approximate methods have been
developed for estimation of critical loads of
building structures(7-10, 7-11, 7-12, 7-22). Among
these, a simple method developed by Nair(7-22) is
explained here. This method takes advantage of
the fact that most multi-story buildings have
lateral load-displacement characteristics that are
similar to those of either a flexural cantilever or
a shear cantilever.

Buildings with braced frames or shear walls,
and tall buildings with unbraced frames or
tubular frames, usually have lateral load
deformation characteristics that approach those
of a flexural cantilever. On the other hand,
buildings of low or moderate height with
unbraced frames (in which column axial
deformations are not significant) usually have

Figure 7-10. Alignment charts for determination of effective length factors(7-19).
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lateral load-displacement characteristics similar
to those of a shear cantilever.

The above observations can be extended to
the torsional behavior of structures. If in a
multistory building, torsional stiffness is
provided by braced frames, shear walls, or tall
unbraced frames not exhibiting tube action, the
torsion-rotation characteristics of the building
will be similar to the lateral load-displacement
characteristics of a flexural cantilever. If a
building's torsional stiffness is provided by low
to mid-rise unbraced frames, or by tubular
frames, the building will have torsion-rotation
characteristics that are similar to the lateral
load-displacement characteristics of a shear
cantilever.

Buildings Modeled as Flexural
Cantilevers

For a flexural cantilever of height H and
constant stiffness EI, the uniformly distributed
vertical load, per unit height (Figure 7-11), pcr ,
that will cause lateral buckling is given by the
equation

pcr = 7.84 EI / H 3 (7-4)

If the stiffness varies with the equation  EI = (a
/a/H)EI0, where EI0 is the stiffness at the base
and a is the distance from the top, the critical
load is given by:

pcr = 5.78 EI0 /H 3 (7-5)

If the stiffness varies with the equation EI =
(a/H)2EI0, the critical load is:

pcr = 3.67 EI0 / H 3 (Eq. 7-6)

These solutions for critical load can be found in
basic texts on elastic stability.

If a uniformly distributed lateral load of f
per unit height is applied to a flexural
cantilever, the lateral displacement ∆ at the top
is:

for a constant EI:

∆ = 0.125 f H 4/EI (7-7)

for EI = (a /H) EI0:

∆ = 0.167 fH 4/EI0 (7-8)

for EI = (a/H)2EI0:

∆ = 0.250 fH 4/EI0 (7-9)

Figure 7-11. Lateral loading and buckling of a flexural
cantilever(7-22).

If the lateral load is not uniform, an
approximate answer may be obtained by
defining f as the equivalent uniform lateral load
that would produce the same base moment as
the lateral load used in the analysis. By
combining Equations 7-4, 7-5, and 7-6 with
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Equations 7-7, 7-8 and 7-9, EI can be
eliminated and pcr can be expressed in terms of
f/∆ , as follows:

for a constant EI :

pcr = 0.98 fH/D (7-10)

for EI = (a/H) EI0:

pcr = 0.96 fH/D (7-11)

for EI = (a/H )2EI0:

pcr = 0.92 fH/D (7-12)

From the above equations it is obvious that the
relation between pcr and f/∆ is not very sensitive
to stiffness variation over the height of the
structure. Hence, regardless of the distribution
of stiffness, the following equation is
sufficiently accurate for design purposes:

pcr = 0.95 fH /∆ (7-13)

The magnification factor µ, as previously
defined, is given by:

crpp φγ−
=µ

/1

1
(7-14)

where p is the actual average gravity load per
unit height on the building, γ is the design load
factor, and φ is the strength reduction factor.
Note that p must include the load on all vertical
members, including those that are not part of
the lateral-load-resisting system.

Thus, if the lateral displacement is known
from a first-order analysis, the critical load and
the corresponding magnification factor can be
estimated using Equations 7-13 and 7-14.

For buildings whose torsional behavior
approaches that of a flexural cantilever, the
following formula may be used to estimate the
torsional buckling load of the structure:

r2 pcr = 0.95 tH / θ (7-15)

where t is an applied torsional load, per unit
height of the building, θ is the rotation at the
top of the building in radians, pcr is the critical
vertical load for torsional buckling per unit
height of the building, and r is the polar radius
of gyration of the vertical loading about the
vertical axis at the center of twist of the
building.

For a doubly symmetric structure, uniformly
distributed gravity loading, and a rectangular
floor plan with dimensions a and b:

12

22
2 ba

r
+= (7-16)

Buildings Modeled as Shear Cantilevers

If a portion of a vertical shear cantilever
undergoes lateral deformation δ, over a height
h, when subjected to a shear force V, the critical
load for lateral buckling of that portion of the
cantilever is given by

Pcr = Vh/δ (7-17)

When the above equation is applied to a single
story of a building, h is the story height, δ is the
story drift caused by the story shear force V,
and Pcr is the total vertical force that would
cause lateral buckling of the story (see Figure
7-12).

Figure 7-12. Lateral loading and buckling of a story in a
shear cantilever type building(7-22).
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The magnification factor µ , is given by

crPP φγ−
=µ

/1

1
(7-18)

where P is the total gravity force in the story, γ
is the load factor, and φ is the strength reduction
factor.

The accuracy of Equation 7-17, when
applied to a single story of a framed structure,
depends on the relative stiffness of the beams
and columns, and on the manner in which the
gravity loads are distributed among the
columns. The error is greatest for stiff beams
and slender columns and may be as high as
20%.

For buildings whose torsional behavior
approaches that of a shear cantilever, the
following equation may be used to estimate the
torsional buckling load of a particular story of
the building:

r2 Pcr = T h/θ (7-19)

where T is an applied torsional load on the
story, θ is the torsional deformation of the story
(in radians) due to the torque T, h is the story
height, Pcr is the critical load for torsional
buckling of the story, and r is the polar radius
of gyration of the vertical load.

Application Examples  Consider the
twenty story buildings shown in Figure 7-13.
The buildings are analyzed using a linear elastic
analysis program for a constant lateral load of
25 psf applied in the North-South direction. The
East-West plan widths are 138 ft. The gravity
load is assumed to be 130 psf on each floor.

For building I, the first-order displacement
at the top is 0.729 ft. Using Equation 7-13:

H = 240 ft
f = 0.025(138) = 3.45 kips/ft
∆ = 0.729 ft
pcr =0.95(3.45)(240)/0.729=1079 kips/ft

The estimated critical load of 1079 k/ft
corresponds to 12,948 kips or 1,360 psf on each

floor. The corresponding magnification factor
assuming γ = φ = 1.0, is

106.1
1360/1301

1 =
−

=µ

and the magnified lateral displacement at the
roof is given by:

γ∆ = 1.106(0.729) = 0.806 ft

An elastic stability analysis of this building
(7-23) indicates a critical load of 1,369 psf for
North-South buckling. A large-deformation
analysis for combined gravity load and North-
South lateral loading indicates a roof
displacement of 0.805 ft.

Figure 7-13. Buildings analyzed in references (7-22) and
(7-23).

For building II, the computed story drifts for
the 15th, 10th, and 5th levels are 0.0522 ft,
0.0609 ft, and 0.0582 ft, respectively. The
corresponding story shears at these levels are
228 kips, 435 kips, and 642 kips. Using
Equation 7-17:
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15th story: Pcr = 228(12)/0.0522 = 52,414 kips

10th story:Pcr = 435(12)/0.0609 = 85,714 kips

5th story: Pcr = 642(12)/0.0582 = 132,371 kips

The corresponding magnification factors
assuming γ = φ = 1.0 are:

for the 15th story:

165.1
414,52/74271

1 =
−

=µ

for the 10th story:

189.1
714,85/616,131

1 =
−

=µ

for the 5th story:

176.1
371,132/806,191

1 =
−

=µ

and the magnified story drifts are:

for the 15th story:

µ ∆ = 1.165(0.0522) = 0.0608 ft

for the 10th story:

µ ∆ = 1.189(0.0609) = 0.0724 ft

for the 5th story:

µ ∆ = 1.176(0.0582) = 0.0684 ft

A large-deformation analysis of this
building(7-23) indicates story drifts of 0.0607 ft,
0.0723 ft, and 0.0686 ft for the 15th, 10th, and
5th stories, respectively.

7.4.3 Approximate P-Delta Analysis

Three methods for approximate P-delta
analysis of building structures are presented in
this section: the iterative P-delta method; the

direct P-delta method; and the negative bracing
member method. All three methods are shown
to be capable of providing accurate estimates of
P-delta effects.

Iterative P-Delta Method  The iterative P-
delta method(7-16, 7-24, 7-25, 7-26) is based on the
simple idea of correcting first-order
displacements, by adding the P-delta shears to
the applied story shears. Since P-delta effects
are cumulative in nature, this correction and
subsequent reanalysis should be performed
iteratively until convergence is achieved. At
each cycle of iteration a modified set of story
shears are defined as:

( ) hPVV ii /11 −∆+= ∑∑∑ (7-20)

where ΣVi is the modified story shear at the end
of ith cycle of iteration, ΣV1 is the first-order
story shear, ΣP is the sum of all gravity forces
acting on and above the floor level under
consideration, ∆i-1 is the story drift as obtained
from first-order analysis in the previous cycle
of iteration, and h is the story height for the
floor level under consideration. Iteration may

be terminated when ∑∑ −≈ 1ii VV or

1−∆≈∆ ii .

Generally for elastic structures of reasonable
stiffness, convergence will be achieved within
one or two cycles of iteration(7-16). One should
note that since the lateral forces are being
modified to approximate the P-delta effect, the
column shears obtained will be slightly in error
(7-16). This is true for all approximate methods
which use sway forces to approximate the P-
delta effect.

EXAMPLE 7-1
For the 10 story moment resistant steel

frame shown in Figure 7-14, modify the first-
order lateral displacements to include the P-
delta effects by using the Iterative P-delta
Method. The computed first-order lateral
displacements and story drifts for the frame are
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Figure 7-14. Elevation of the story moment frame used in
Example 7-1.

shown in Table 7-1. The tributary width of the
frame is 30 ft. The gravity load is 100 psf on
the roof and 120 psf on typical floors. Use
center-to-center dimensions.

The calculations for this example using the
iterative P-delta method are presented in Tables
7-2 and 7-3. The convergence was achieved in
two cycles of iteration. Table 7-3 also shows
results obtained by an "exact" P-delta analysis.

To further explain the steps involved in the
application of this method, let us consider the

bent at the 8th level of the frame. The story
height (h) is 12 feet (144 in.), the total gravity
force at this level (ΣP) is 612 kips, the story
shear (ΣV) is 71.74 kips, and the first-order
story drift is 0.785 inches (see Table 7-1).

The P-Delta Contribution to the story shear
is:

( )
kips34.3

144

)785.0)(612(1 ==∆Σ
h

P

and the modified story shear is:

ΣV2 = ΣV1 + (ΣP) ∆1 / h
 = 71.74 + 3.34 = 75.08 kips

Repeating this operation for all stories results in
a modified set of story shears, from which a
modified set of applied lateral forces is obtained
(Table 7-2). A new first-order analysis of the
frame subjected to these modified lateral forces
results in a modified set of lateral displacements
(D2) and story drifts (∆2) as shown in Table 7-2.
The maximum displacement obtained from the
second analysis was 8.478 in., which is 9%
larger than the original first-order displacement.
Hence, a second iteration is necessary. Again
performing the calculations for the bent at the
8th floor:

kips50.3
144

)823.0)(612()( 2 ==∆Σ
h

P

ΣV3 = ΣV2 + (ΣP) ∆2 / h
  =71.74 + 3.50 = 75.24 kips

Another first-order analysis for the new set of
lateral forces indicates a maximum
displacement of 8.508 inches, which is less than

Table 7-1. Applied forces and computed First-Order Displacements for the 10-story frame.
Level Story height

h, in.
Gravity force

ΣP, kips
Lateral load

V, kips
Story shear
ΣV1 ,kips

Lateral disp.
D1, in.

Story drift
∆1, in.

10 144 180 30.22 30.22 7.996 0.517
9 144 396 21.94 52.17 7.479 0.736
8 144 612 19.57 71.74 6.743 0.785
7 144 828 17.20 88.93 5.958 0.907
6 144 1044 14.83 103.76 5.051 0.899
5 144 1260 12.45 116.21 4.152 0.914
4 144 1476 10.08 126.30 3.238 0.833
3 144 1692 7.71 134.01 2.400 0.867
2 144 1908 5.34 139.34 1.533 0.768
1 180 2124 2.97 142.31 0.765 0.765
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1% larger than the displacements obtained in
the previous iteration. Hence, the iteration was
terminated at this point.

The first-order and second-order lateral
displacements and story drifts are shown in
Figures 7-15 and 7-16. As indicated by these
figures, the results are virtually identical to the
exact results.

Direct P-Delta Method  The direct P-delta
method(7-16) is a simplification of the iterative
method. Using this method, an estimate of final
deflections is obtained directly from the first
order deflections.

The simplification is based on the
assumption that story drift at the ith level is
proportional only to the applied story shear at
that level (ΣVi). This assumption allows the
treatment of each level independent of the
others.

If F is the drift caused by a unit lateral load
at the ith level, then the first order drift ∆1 is:

∆1=F ΣV1 (7-21)

After the first cycle of iteration,
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and after the i th cycle of iteration:
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Table 7-2. Iterative P-delta method (First cycle of iteration)
Level (ΣP) ∆1 / h,

kips
ΣV1+(ΣP) ∆1 / h,

kips
Modified lateral
Force V2, kips

Modified lateral
Disp. D2, in.

Modified story Drift
∆2, in.

10 0.65 30.87 30.87 8.478 0.533
9 2.02 54.19 23.32 7.945 0.767
8 3.34 75.08 20.89 7.178 0.823
7 5.22 94.15 19.07 6.355 0.959
6 6.52 110.28 16.13 5.396 0.955
5 8.00 124.21 13.93 4.441 0.976
4 8.59 134.89 10.68 3.465 0.897
3 10.19 144.20 9.31 2.568 0.930
2 10.18 149.52 5.32 1.638 0.823
1 9.03 151.34 1.82 0.815 0.815

Table 7-3. Iterative P-delta method (Second cycle of iteration)
Level (ΣP) ∆2 / h,

kips
ΣV2+(ΣP) ∆2 / h,

kips
Modified lateral
Force V3, kips

Modified lateral
Disp. D3, in.

Modified story
Drift ∆3, in.

10 0.67 30.89 30.89 8.508 (8.510) 0.534 (0.534)
9 2.11 54.28 23.39 7.975 (7.976) 0.768 (0.768)
8 3.50 75.24 20.96 7.207 (7.209) 0.825 (0.825)
7 5.51 94.44 19.20 6.382 (6.384) 0.962 (0.963)
6 6.92 110.68 16.24 5.419 (5.421) 0.959 (0.959)
5 8.54 124.75 14.07 4.461 (4.462) 0.980 (0.980)
4 9.19 135.49 10.74 3.480 (3.481) 0.900 (0.901)
3 10.93 144.94 9.45 2.580(2.581) 0.935 (0.935)
2 10.90 150.24 5.30 1.645 (1.646) 0.827 (0.827)
1 9.62 151.93 1.69 0.818 (0.819) 0.818 (0.819)

* Values in parentheses represent results of an “exact” P-delta analysis.
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Figure 7-15. Lateral displacement of the 10-story frame as
obtained by various P-delta methods.

Figure 7-16. Story drift ratios of the 10 story frame as
obtained by various P-delta methods.

Equation 7-23 is a geometric series that
converges if (ΣP) F/h) < 1.0, to

hPF

VF
Final /)(1 1

1

Σ−
Σ=∆ (7-24)

But FΣV1 = ∆1. Hence, the final second-
order deflection is:

hVPFinal )/()(1 11

1

Σ∆Σ−
∆

=∆ (7-25)

Equation 7-25 can be expressed as ∆Final =
µ∆1, where µ = 1/[1-(ΣP)∆1/(ΣV1)h] is a
magnification factor by which the first-order
effects should be multiplied to include the
second-order effects. All internal forces and
moments related to the lateral loads should also
be magnified by µ. Member design may be
carried out using an effective length factor of
one.

An estimate of the critical load for an
individual story, or the entire frame, can be
obtained directly from Equation 7-25. Note that
if (ΣP)∆1/(ΣV1)h = 1, the second-order
displacement would go to infinity. Hence, ΣP =
(ΣV1)h/∆1 may be considered to be the critical
load of the system.

Similarly, Σ(Pr2) = ΣT1 h/θ1 can be viewed
as the torsional critical load of the system. It is
interesting to note that the critical loads and the
magnification factor obtained here are in
essence the same as those obtained in Section
7.4.2. by an approximate buckling analysis.

The term (ΣP)∆1/(ΣV1)h is commonly
referred to as the stability index. Similarly, a
torsional stability index may be defined as
Σ(Pr2)θ1/(ΣT1h).

It has been suggested(7-16) that if the stability
index is less than 0.0475 for all three axes of
the building, the second-order effects can be
ignored. For values of the stability index
between 0.0475 and 0.20, the direct P-delta
method can provide accurate estimates of the
second-order effects. Designs for which values
of the stability index exceed 0.20 should be
avoided.
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EXAMPLE 7-2
For the 10 story frame of Example 7-1

compute the second-order displacements and
story drifts by the direct P-delta method.

The calculations using the direct P-delta
method are shown in Table 7-4. For example,
for the first floor which has a story height of 15
feet (180 inches), the story shear is 142.31 kips,
the total gravity force is 2124 kips, and the
first-order drift is 0.765 inches. The
magnification factor and the second-order
displacements are:

068.1
)180)(31.142/()765.0)(2124(1

1 =
−

=µ

in.817.0)76.0)(068.1(12 ==∆µ=∆

A comparison with the exact results (Figures
7-15 and 7-16) reveals the remarkable accuracy
of this simple technique.

Negative Bracing Member Method   The
negative bracing member method(7-16, 7-26, 7-27),
which was first introduced by Nixon, Beaulieu
and Adams(7-27), provides a direct estimate of
the P-Delta effect via any standard first-order
analysis program. Fictitious bracing members
with negative areas are inserted (Figure 7-17) to
model the stiffness reduction due to the P-delta
effect.

The cross sectional area of the negative
braces for each floor level can be obtained by a

simple analogy to the Hooke's law (F = K∆).
The additional shear due to P-delta effect is
(ΣP)∆/h, where ΣP is the total gravity force and
h is the story height. The term ΣP/h is a
stiffness term but it is contributing to lateral
displacement instead of resisting it. Hence, it
can be considered as a negative stiffness. A
brace with a cross sectional area A, a length Lbr,
modulus of elasticity E, making an angle α with
the floor, provides a stiffness equal to
(AECos2α)/Lbr against lateral displacement. By
equating the brace stiffness to -ΣP/h, the
required area of the equivalent negative brace is
obtained:

α
Σ−=

2cosE

L

h

P
A br (7-26)

It is important to note that, due to the horizontal
and vertical forces in the braces, the axial forces
and shears in the columns will be slightly in
error. These errors can be reduced by making
the braces as long as possible (see Figure 7-17).

EXAMPLE 7-3
For the 10 story frame of Example 7-1,

compute the second-order displacements and
story drifts by the Negative Bracing Member
Method. The modulus of elasticity of the braces
is:

Table 7-4. P-delta analysis by direct P-delta method (Example 7-2)
Level h ,

in
ΣV1,
kips

ΣP,
kips

∆1,
in.

µ ∆2=µ∆1,
in.

2nd-Order
Disp.,in.

10 144 30.22 180 0.517 1.022 0.528 8.505
9 144 52.17 396 0.736 1.040 0.766 7.977
8 144 71.74 612 0.785 1.049 0.823 7.211
7 144 88.93 828 0.907 1.062 0.964 6.388
6 144 103.76 1044 0.899 1.067 0.959 5.424
5 144 116.21 1260 0.914 1.074 0.982 4.465
4 144 126.30 1476 0.838 1.073 0.899 3.483
3 144 134.01 1692 0.867 1.082 0.938 2.584
2 144 139.34 1908 0.768 1.079 0.829 1.646
1 180 142.31 2124 0.765 1.068 0.817 0.817
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Figure 7-17. Frame modeled with negative braces.

E = 29,000. Ksi

For a typical floor,

9615.0)188.61/60(cos
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=+=brL

For the first floor,
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The negative brace area for each floor level
may now be calculated using Equation 7-26.
For example, for the fourth floor where the total
gravity force is 1476 kips, the negative brace
area is:

2

4

in2699.0

)9615.0)(29000)(144(

)26.734)(1476(

−=

−=A

The brace areas, and the displacements obtained
using the negative braces, are shown in Table 7-
5. The very good agreement with the "exact"
results (Table 7-3) is evident.

Modified Versions of Approximate P-delta
Methods  The P-Delta methods presented in
this chapter ignore the "C-S" effect (Figure 7-
4d). For most practical problems, the C-S
effects are much smaller than the P-delta
effects, and can be ignored. However, if
needed, the P-delta methods described in
previous sections, can be simply modified to
include this effect.

The modification is achieved by multiplying
the member axial forces by a flexibility factor,
γ. For a single column, γ is given by(7-26):

Table 7-5. P-delta analysis by negative-bracing-member method.
Level h,

in
ΣP,
kips

Lbr,
in.

E cos2α Abr,
in.

2nd-Order
Disp.,in.

10 144 180 734.26 27,884 -0.0329 8.458
9 144 396 734.26 27,884 -0.0724 7.929
8 144 612 734.26 27,884 -0.1120 7.168
7 144 828 734.26 27,884 -0.1514 6.350
6 144 1044 734.26 27,884 -0.1909 5.394
5 144 1260 734.26 27,884 -0.2341 4.442
4 144 1476 734.26 27,884 -0.2699 3.468
3 144 1692 734.26 27,884 -0.3094 2.572
2 144 1908 734.26 27,884 -0.3489 1.642
1 144 2124 742.16 27,295 -0.3209 0.817
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2

2

]1)2)(2[(

)2)(3()(4
22.01

−++
+++−+=γ

BA

BABA

GG

GGGG

(7-27)

where GA and GB are the stiffness ratios as
defined in Section 7.4.1. The flexibility factor γ
has a rather small range of variation (from 1.0
for GA = GB = ∞ , to 1.22 for GA = GB = 0.). For
design purposes a conservative average value of
γ can be used for the entire frame. Lai and
MacGregor(7-26) suggest an average value of γ =
1.15, while Stevens(7-10) has proposed an
average value of γ = 1.11.

To include the C-S effect in the previously
discussed P-delta methods, it is sufficient to use
γΣP instead of ΣP wherever the term ΣP
appears.

EXAMPLE 7-4
For the 10-story frame of Example 7-1,

compute the second-order displacements and
story drifts at the first, fifth, and the roof levels
by the modified direct P-delta method. An
average value of γ = 1.11 is assumed for all
calculations.

Using the values listed in Table 7-4 we
have:

• at the roof:
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• at the fifth level:
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• and at the first level:
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Comparison of these results with those obtained
by the original method reveals an increase of
less than 1% in the story drifts due to this
modification.

7.4.4 "Exact" P-Delta Analysis

Construction of the geometric stiffness
matrix is the backbone of any exact second-
order analysis. The same matrix is also essential
for any finite element buckling analysis
procedure. In this section, the concept of
geometric stiffness matrix is introduced, and a
general approach to "exact" second-order
structural analysis is discussed.

Consider the deformed column shown in
Figure 7-18. For the sake of simplicity, neglect
the axial deformation of the member, and the
small C-S effect. The slope deflection equations
for this column can be written as(7-12)
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From force equilibrium:
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Substituting Equations 7-28 and 7-29 into
Equation 7-30:
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Now if we rewrite the above equations in a
matrix form, we obtain:
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Since we wrote the equilibrium equations for
the deformed shape of the member, this is a
second-order stiffness matrix. Notice that the
only difference between this matrix, and a
standard first-order beam stiffness matrix, is the
presence of P/L or geometric terms. The
stiffness matrix given by Equation 7-33 can
also be written as:

[ ] [ ] [ ]gf KKK −= (7-34)

where [Kf] is the standard first-order stiffness
matrix (material matrix) and [Kg] is the
geometric stiffness matrix given by:
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Inspection of the simple second-order
stiffness matrix given by Equation 7-33 shows
why general second-order structural analysis

has an iterative nature. The matrix includes P/L
terms, but the axial force P is not known before
an analysis is performed. For the first analysis
cycle, P can be assumed to be zero (standard
first-order analysis). In each subsequent
analysis cycle, the member forces obtained
from the previous cycle are used to form a new
geometric stiffness matrix, and the analysis
continues until convergence is achieved. If
inelastic material behavior is to be considered,
then the material stiffness matrix must also be
revised at appropriate steps in the analysis.

Substantial research has been performed on
the formulation of geometric stiffness matrices
and finite element stability analysis of
structures(7-28,7-36). A complete formulation of
the three-dimensional geometric stiffness
matrix for wide flange beam-columns has been
proposed by Yang and McGuire (7-36).

The common assumption that floor
diaphragms are rigid in their own plane, allows
condensation of lateral degrees of freedom into
three degrees of freedom per floor level: two
horizontal translations and a rotation about the
vertical axis. This simplification significantly
reduces the effort required for an "exact"
second-order analysis. A number of schemes
have been developed to permit direct and non-
iterative inclusion of P-Delta effects in the
analysis of rigid-diaphragm buildings (7-37, 7-38, 7-

39).
The geometric stiffness matrix for a three

dimensional  rigid diaphragm building is given
in Figure 7-19(7-37, 7-38). For a three-dimensional
building with N floor levels, [Kg] is a 3N × 3N
matrix. For planar frames, the matrix reduces to
an N × N tridiagonal matrix. The non-zero
terms of this matrix are given by:

1

1)()(

+

+Σ+Σ=α
i

i

i

i
i h

P

h

P
(7-35)

1

1)()(

+

+Σ+Σ=β
i

i

i

i
i h

T

h

T
(7-36)



348 Chapter 7
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Figure 7-18. Geometric stiffness matrix for three-
dimensional rigid diaphragm buildings.

where hi is the floor height for level i, Pi is
weight of the i th level, Ti is the second-order
story torque, and
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(ΣP)i can also be represented in terms of story
mass, mi, and gravitational acceleration, g, as
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The story torque, Ti, is given by (7-38)
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where pj is the vertical force carried by the jth
column, dj is the distance of jth column from
the center of rotation of the floor, and θ is an

imposed unit rigid body rotation of the floor.
Assuming that the dead load is evenly
distributed over the floor and that a roughly
uniform vertical support system is provided
over the plan area of the floor, Equation 7-42
can be further simplified to

i
Rii h

g
mT = (7-43)

where mRi is the rotational mass moment of
inertia of the ith floor and g is the gravitational
acceleration. The approximation involved in the
derivation of Equation 7-43 is usually
insignificant(7-39). Hence, for most practical
problems, Equation 7-43 can be used instead of
Equation 7-42, thereby allowing the direct
inclusion of the P-delta effect in a three
dimensional structural analysis.

7.4.5 Choice of Member Stiffnesses for
Drift and P-Delta Analysis

A common difficulty in seismic analysis of
reinforced concrete structures is the selection of
a set of rational stiffness values to be used in
force and displacement analyses. Should one
use gross concrete section properties? Should
one use some reduced section properties? Or
should the gross concrete properties be used for
one type of analysis and reduced section
properties be used for another type of analysis?

The seismic design codes in the United
States are not specific about this matter. Hence,
the choice of section properties used in lateral
analysis in general, and seismic analysis in
particular, varies widely.

Contributing to the complexity of this issue,
are the following factors:
1. Although elastic material behavior is usually

assumed for the sake of simplicity,
reinforced concrete is not a homogeneous,
linearly elastic material.

2. Stiffness and idealized elastic material
properties of a reinforced concrete section
vary with the state of behavior of the section
(e.g. uncracked, cracked and ultimate
states).
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3. Not all reinforced concrete members in a
structure, and not all cross sections along a
particular member, are in the same state of
behavior at the same time.

4. For many beams and other non-
symmetrically reinforced members, the
stiffness properties for positive bending and
negative bending are different.

5. Stiffness of reinforced concrete members
and structures varies with the time, and with
the history of past exposure to wind forces
and earthquake ground motions.

6. Stiffness of reinforced concrete members
and structures varies with the amplitude of
the applied forces.
Analytical and experimental studies(7-40)

have indicated that for motions which are
within the working stress design limits of
members, the measured fundamental periods of
concrete structures are generally slightly less
than the periods computed using gross concrete
section properties. According to Reference 7-
40, in the case of large amplitude motions up to
the yield level, the stiffness of the building is
usually somewhere between the computed
values based on the gross concrete section
properties and the cracked section properties.
Based on this observation, the same reference
suggests that for force analysis, the gross
concrete section properties and the clear span
dimensions be used and the effect of
nonseismic structural and nonstructural
elements be considered. For drift calculations,
either the lateral displacements determined
using the above assumptions should be doubled
or the center to center dimensions along with
the average of the gross section and the cracked
section properties, or one half of the gross
section properties should be used. Furthermore,
the nonseismic structural and nonstructural
elements should be neglected, if they do not
create a potential torsional reaction.

Similar sets of assumptions have been
proposed by research workers who have been
concerned about the choice of member
stiffnesses to be used in the P-delta analysis of
concrete structures. For example, for second-
order analysis of concrete structures subjected

to combinations of gravity and wind loads,
MacGregor and Hage(7-16) recommend using
40% of the gross section moment of inertia for
beams and 80% of the gross section moment of
inertia for columns. See Chapter 15 for more
information on this subject.

7.5 DRIFT DESIGN
PROCEDURES

7.5.1 Drift Design of Moment Frames
and Framed Tubes

The lateral displacements and story drifts of
moment resistant frames and symmetrical
framed tubes are caused by bent action,
cantilever action, the shear leak effect, and
panel zone distortions. With the simplified
methods presented in this section, the
contribution of each of these actions to the story
drift can be estimated separately. The story
drifts so obtained are then added to obtain an
estimate of the total story drift. Once an
estimate of the drift and the extent of the
contribution of each of these actions to the total
drift are known, proper corrective measures can
be adopted to reduce story drifts to an
acceptable level.

Bent Displacements  A significant portion
of drift in rigid frames and framed tubes is
caused by end rotations of beams and columns
(Figure 7-20). This phenomenon is commonly
referred to as bent action (also called frame
action, or racking). For most typical low to
mid-rise rigid frames, almost all of the drift is
caused by the bent action. However, for taller
frames, other actions such as axial deformation
of columns (cantilever or chord action) become
more significant. For extremely tall frames, the
contribution of cantilever action to drift may be
several times larger than that of the bent action.

In the design of framed tubes, it is usually
desirable to limit the bent action drifts to 30 to
40% of the total drift. If a framed tube is also
braced, the bent action drifts are usually limited
to about 20 to 25% of the total drift(7-1). The
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bent action drift ∆bi for any level i of a frame,
may be estimated by(7-41):

Figure 7-19. Frame deformation caused by the bent action.
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(7-44)

where (ΣV)i is the story shear, hi is the story
height b, and

(ΣKg)i = summation of Igi / Lgi for all girders
(ΣKc)i= summation of Ici / hi for all columns

Igi = individual girder moment of inertia
Lgi = individual bay length
Ici = individual column moment of inertia

Equation 7-44 can be derived by applying the
slope deflection equations to the typical
subassemblage shown in Figure 7-21. In the
derivation of Equation 7-44, it is assumed that
the points of contraflexure are at the mid-span
of beams and columns.

b Depending on the modeling assumption, center-to-center
length, clear length, or something in between may be
used.

Figure 7-20. Typical subassemblage used in derivation of
the bent action drift equation (7-41).

Figure 7-21. The bent at the 5th floor (Example 7-5).

Other, but similar, relationships for bent
drift design have been proposed(7-42, 7-43).
Equation 7-44 can also be used to modify
existing beam and column sizes to satisfy a
given drift limit. Example 7-5 illustrates such
an application.

EXAMPLE 7-5
For the bent at the 5th floor of the 10-story

frame of Example 7-1 (Figure 7-22), estimate
the story drift caused by bent action. Modify
member sizes, if necessary, to limit the bent
drift ratio to 0.0030. Neglect the P-delta effect.

W14×68 Ic1 = 723 in4

W14×90 Ic2 = 999 in4

W21×50 Ig = 984 in4

3in30.12
)20)(12(

)984)(3( ==


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
∑

g

g
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I
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Additional member weight required for drift
control:

W=3 (76-50)(20) + 2 (176+120-68-90)(12)
   =4872 lb

2. Increasing beam sizes only:
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Check the new bent drift:
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Additional member weight required for drift
control:

W = 3(99-50)(20) = 2940 lb

3. Increasing column sizes only:
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Therefore, bent drift control by increasing
column sizes only is not feasible.

In this case, drift control by increasing beam
sizes only, requires less material. However, in
general, one should be careful about increasing
beam sizes alone, since it can jeopardize the
desirable strong column-weak girder behavior.

Cantilever Displacements  In tall frames
and tubes, there is significant axial deformation
in the columns caused by the overturning
moments. The distribution of axial forces
among the columns due to the overturning
moments is very similar to distribution of
flexural stresses in a cantilever beam. The
overturning moments cause larger axial forces
and deformations on the columns which are
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farther from the center line of the frame. This
action, which causes a lateral deformation that
closely resembles the deformation of a
cantilever beam (Figure 7-23), is called the
cantilever or chord action. In a properly
proportioned framed tube, the cantilever
deflections are significantly smaller than a
similar rigid frame. As shown in Figure 7-24,
this is due to the participation of some of the
columns in the flange frames in resistance to
cantilever deformations. The taller the framed
tube, the closer the column spacings, and the
stronger the spandrel girders, the more
significant the tube action becomes.

Figure 7-22. Cantilever or chord deformation.

Cantilever displacements may be estimated
by simple application of the moment-area
method. The moment of inertia for an
equivalent cantilever beam is computed as:

∑= )( 2
0 icii dAI (7-45)

where Aci is cross sectional area of an individual
column and di is its distance from the center-
line of the frame. The summation is carried
over all the columns of the web frames, and
those columns of the flange frames which are
believed to participate in resistance to
cantilever deflections. The computation of
cantilever displacements for each floor level
can be summarized in the following steps.

Figure 7-23. Tube action in response to lateral loads.

Step 1- Compute story moment of inertia Ioi

using Equation 7-45.
Step 2- Compute overturning moments Mi.
Step 3- Compute Area under the M/EIoi

from:
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Step 4- Compute ix (see Figure 7-25) from:
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Step 5- Compute story displacement from:
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where Hi is the total height of the ith floor
measured from the base of the structure.
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Figure 7-24. Estimating cantilever displacements by the
moment area method.

EXAMPLE 7-6
Use the moment-area method and the

procedure explained in this section to compute
displacements at points 1, 2 and 3 of the simple
cantilever column shown in Figure 7-26.
Assume EI = 58 × 106, kips-in2

Overturning moments:
M3 = 0.
M2 = (100)(60) = 6000. in.-kips
M1 = (100)(120) = 12000. in.-kips
M0 = (100)(180) = 18000. in.-kips

Area under M/EI curve:
A0 = 0.
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Figure 7-25. Cantilever column of example 7-6.

Shear Leak Displacements  In buildings
with closely spaced columns and deep girders,
such as framed tubes, the contribution of
shearing deformations to the lateral
displacements (called the shear leak effect) may
be significant. Story drifts due to the shear leak
effect at level i, ∆shi, may be estimated as (7-41)
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where G is the shear modulus and A'gi and A'ci

are the shear areas of individual girders and
columns at level i.

In order to simplify the design process, an
effective moment of inertia, Ieff, can be defined
where the contributions of both flexural and
shearing deformations are considered

2

2

)1(24 LAIv

ILA
Ieff ′++

′
= (7-50)

where A' is the shear area, L is span length, I is
the moment of Inertia of the section, and v is
Poisson's ratio.

EXAMPLE 7-7
For the bent of Example 7-5, estimate the

additional story drift caused by the shear leak
effect.

We have

W14×68: A'= dtw = (14.00)(0.415) = 5.83 in.2

W14×90: A'= dtw = (14.02)(0.440) = 6.17 in.2

W21×50: A'= dtw = (20.83)(0.380) = 7.92 in.2

ΣA'giLi = (3)(7.92)(240) = 5702.4
ΣA'cihi = (2)(6.17 + 5.83)(144) = 3456.0

Using Equation 7-49:

in.10.0
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1
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1
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 +=∆ shi

Panel Zone Distortions   When joint shear
forces are high, and the beam-column panel
zones are not adequately stiffened, panel zone
distortions can have a measurable impact on the
story drift. The panel zone force-deformation
behavior is complex and nonlinear. Currently,
there is no real consensus among researchers on
appropriateness of various design-oriented
approaches to this problem.

Cheong-Siat-Moy(7-44) has recommended a
simple method based on elastic theory to
estimate this effect. The method assumes a
linear relationship between the shearing forces

and the panel zone distortions. It also assumes a
uniform distribution of shear stress throughout
the panel zone.

A simple beam-column subassemblage and
the corresponding force and displacement
diagrams, as assumed by this method, are
shown in Figure 7-27. It can be shown that the
deformation angle γ and the additional lateral
story drift due to panel zone distortion, ∆p, are:

c

gc

Gtd

VdM −
=γ

)/(2
(7-51)

2

)( g
p

dh −γ
=∆ (7-52)

where Mc is the moment from one column, dg is
the girder depth, V is the column shear, G is the
shear modulus, t is the panel zone thickness, dc

is the column depth, and h is the story height.
Hence, (h - dg) is the clear column height.

Figure 7-26. Effect of panel zone deformation(7-44)
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If the points of contraflexure are assumed to
be at mid-span of the beams and columns,
Equation 7-51 can be further simplified to:

c

g

Gtd

dh
V

2)/( −
=γ (7-53)

Considering the approximate nature of the
above formula, it is not necessary to apply it to
each individual column. Instead, it can be used
in an average sense (see Example 7-8).

A series of experimental and analytical
studies on the behavior of steel beam-column
panel zones have been conducted by various
research institutions (7-45,7-46,7-47,7-48). In one of
these studies(7-48), conducted at Lehigh
University, several beam-column
subassemblage specimens were subjected to
cyclic loads far beyond their elastic limits.
Based on these tests a formula, similar to
Equation 7-53, for estimation of panel zone
distortions was recommended:
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where L is the beam span length, Lc is clear
column length , G is the shear modulus which is
taken as 11,000 ksi, and γ is the panel zone
distortion in radians.

There is a serious need for further research
on the seismic behavior of beam-column panel
zones.

EXAMPLE 7-8
For the bent of Example 7-5, estimate the

contribution of panel zone distortion to story
drift assuming two conditions: a) No doubler
plates, and b) 1/4-in. doubler plates.

W14 × 68 d = 14.04 in t = 0.450 in
W14 × 90 d = 14.02 in t = 0.440 in
W21 × 50 dg = 20.83 in
Using Cheong-Siat Moy method (Equations

7-52 and 7-53), we have
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without doubler plates:
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with doubler plates:
Average t = 0.445 + 0.25 = 0.695 in
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2
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Using Lehigh’s formula (Equation 7-54):
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Lc= 144 - 20.83 = 123.17 in
L = 12(20) = 240 in

without doubler plates:

t = 0.445 in
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)445.0)(03.14)(11000(
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∆p = (0.00179)(144 - 20.83)/2 = 0.110 in.

with doubler plates:

t = 0.695 in.
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∆p = (0.110)(0.00115)/(0.00179) = 0.071 in.
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Drift Design of a 10 Story Moment
Resistant Frame
In this subsection the approximate methods

for drift and P-delta analysis which were
explained previously, are put into practice by
performing a complete drift design for the 10-
story moment resistant steel frame introduced
in Example 7-1. The goal is to achieve an
economical design that meets the story drift
index limitation of 0.0033.

The first step is to estimate the lateral
displacements and story drifts of the structure.
Calculations of story drifts and lateral
displacements due to bent action, the shear leak
effect, and chord action are presented in Tables
7-6, 7-7 and 7-8 respectively. It was
demonstrated in Example 7-8 that the
contribution of panel zone deformations to
story drifts for this structure, at the level of
forces considered here, is not significant.

Therefore, this effect is ignored in subsequent
analyses.

The total displacements and story drifts are
magnified using the direct P-delta Method.
These calculations are shown in Table 7-9.
Notice that in sizing the members for strength,
all lateral load related forces and moments
should also be multiplied by the corresponding
story magnification factors (see µ in Table 7-9).
Once the internal forces are thus magnified, it is
rational to design the members using an
equivalent length factor of one.

Figures 7-28 and 7-29 depict the
contribution of each action to the total lateral
displacement and story drift. The dominance of
bent action in the lateral response of this frame
can be clearly seen in these figures. As
explained previously, if the frame was
significantly taller, bent action would be

Table 7-6. Calculation of bent-action story drifts and lateral displacements for the 10-story unbraced frame
Level h,

in.
ΣV,
kips

Σ(Ig/Lg),
in.3

Σ(Ic/h),
in.3

∆bi,in.
(Eq. 7-44)

Bent Disp.,
in.

10 144 30.22 6.475 12.68 0.420 6.802
9 144 52.17 6.475 12.68 0.725 6.382
8 144 71.74 10.538 17.56 0.649 5.657
7 144 88.93 10.538 17.56 0.805 5.001
6 144 103.76 12.300 23.92 0.761 4.203
5 144 116.21 12.300 23.92 0.856 3.442
4 144 126.30 16.875 29.47 0.701 2.588
3 144 134.01 16.875 29.47 0.744 1.877
2 144 139.34 16.875 43.61 0.682 1.143
1 180 142.31 16.875 52.33* 0.461 0.461

* Two-thirds of the first story height was used in calculation of the bent-action drift.

Table 7-7. Calculation of shear-leak story drifts and lateral displacements for the 10-story unbraced frame.
Level h,

in.
ΣP,
kips

Σ(Ag′Lg),
in.3

Σ(Ac ′h),
in.3

∆shi,in.
(Eq. 7-44)

Bent Disp.,
In.

10 144 30.22 3516 2550 0.0379 0.8377
9 144 52.17 3516 2550 0.0653 0.7998
8 144 71.74 5206 3161 0.0675 0.7345
7 144 88.93 5206 3161 0.0837 0.6670
6 144 103.76 5999 3455 0.0893 0.5833
5 144 116.21 5999 3455 0.1000 0.4940
4 144 126.30 6703 4267 0.0897 0.3939
3 144 134.01 6703 4267 0.0951 0.3042
2 144 139.34 6703 5379 0.0864 0.2091
1 180 142.31 6703 5379 0.1226 0.1226
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replaced by chord action as the dominant
contributor to lateral displacement.

The results of this approximate analysis are
compared to the results of an exact elastic
analysis in Figures 7-30 and 7-31, where the
good agreement between the two sets of results
may be observed.

Given the dominance of bent action in this
case, a simple drift design strategy based on
reducing the bent drift is adopted. The
maximum bent drift is about 80% of the
maximum total drift. Hence, it would be
rational to reduce the bent drift ratios to 80% of
the maximum allowable value of 0.0033
(≈ 0.0026). It should be noted that increasing
member sizes would further reduce the
contribution of chord and shear leak actions to
the drift. Assuming that the drift control is to be
achieved by increasing both beam and column
sizes, the average magnification factors Φ by
which the moment of inertia of beams and

columns should be multiplied can be calculated
as described in part 1 of Example 7-5. Based on
the average values of Φ, new member sizes for
beams and columns are selected. These member
sizes are shown in Figure 7-32, where the
computed values of Φ are shown in parenthesis.

At this stage, another round of displacement
analysis, similar to that performed in Tables 7-6
to 7-9, is necessary to make sure that the new
design satisfies the drift design criteria. Results
of this analysis are shown in Figures 7-33 and
7-34, which indicate that the new design
satisfies the design drift criteria. This was also
confirmed by performing an exact structural
analysis (Figures 7-35 and 7-36).

The last item on the agenda, is to check the
satisfaction of the strength criteria by the new
design. Codified equivalent static lateral forces,
which are based on a pre-determined
fundamental period for the structure, do not
necessarily change with variation of stiffness.

Table 7-8. Calculation of chord-acrtion and lateral displacements for the 10-story unbraced frame
Level h,

in.
ΣV
kips

Mov,
a

in-kips
Ioi,
in4

A, x
in.

Chord disp.
in.

Chord drift,
in.

10 144 30.22 4,352 3,672,000 0.294×105 48.00 0.5746 0.0722
9 144 52.17 11,864 3,672,000 1.096×105 60.88 0.5024 0.0774
8 144 71.74 22,194 4,619,520 1.830×105 64.72 0.4250 0.0838
7 144 88.93 35,001 4,619,520 3.074×105 66.63 0.3412 0.0795
6 144 103.76 49,942 5,947,200 3.546×105 67.78 0.2617 0.0777
5 144 116.21 66,677 5,947,200 4.868×105 68.56 0.1840 0.0664
4 144 126.30 84,864 7,168,320 5.249×105 69.12 0.1176 0.0557
3 144 134.01 104,161 7,168,320 6.547×105 69.55 0.0619 0.0366
2 144 139.34 124,226 9,639,360 5.882×105 69.89 0.0253 0.0171
1 180 142.31 149,841 9,639,360 8.824×105 87.20 0.0082 0.0082

a Overturning moment.

Table 7-9. Calculation of total first and second order story drifts and lateral displacements for the 10-story unbraced frame
Level h,

in.
ΣV,
kips

ΣP,
kips

∆1
in.

µ ∆2= µ ∆1
in.

2nd –Order
Disp.,in.

10 144 30.22 180 0.517 1.022 0.528 8.547
9 144 52.17 396 0.849 1.047 0.889 8.019
8 144 71.74 612 0.773 1.048 0.810 7.130
7 144 88.93 828 0.941 1.065 1.002 6.320
6 144 103.76 1044 0.898 1.067 0.958 5.318
5 144 116.21 1260 0.987 1.080 1.066 4.360
4 144 126.30 1476 0.833 1.073 0.894 3.294
3 144 134.01 1692 0.865 1.082 0.936 2.400
2 144 139.34 1908 0.786 1.081 0.850 1.464
1 180 142.31 2124 0.584 0.614 0.614 0.614
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Figure 7-27. Contribution of various actions to the total
lateral displacement of the 10 story frame.

Figure 7-28. Contribution of various actions to the total

interstory drift ratios of the 10 story frame.

Figure 7-29. Comparison of approximate and “exact”

second-order displacements.

Figure 7-30. Comparison of approximate and “exact”
second-order interstoy drift ratios.
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Figure 7-31. Member sections after drift design.

Figure 7-32. Approximate lateral displacements for the 10

story frame after drift design.

Figure 7-33. Approximate interstory drift ratios for the 10

story frame after drift design.

Figure 7-34. “Exact” versus approximate displacements

for the 10 story frame after drift design.
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Figure 7-35. “Exact” versus approximate interstory drift

ratios for the 10 story frame after drift design.

Figure 7-36. Influence of drift design on imposed inertial
forces.

In reality, however, increasing member sizes
for drift control, increases the stiffness of the
structure and reduces its natural periods. In
multistory buildings, reduction of natural
periods usually implies an increase in the
inertial forces exerted on the structure.
Therefore, the adequacy of the modified design

to withstand increased inertial forces should be
examined.

Let us assume that the design ground motion
for this example is represented by the design
spectrum shown in Figure 7-37. Application of
the Rayleigh method, or a simple dynamic
analysis, reveals that the fundamental period of
the original design (Figure 7-14) is about 2.7
seconds. The fundamental period of vibration of
the structure after drift design (Figure 7-32) is
about 1.9 seconds. Given the design spectrum
of Figure 7-37, the spectral acceleration
corresponding to the first mode of vibration of
the structure, is about 0.15g for the original
design and 0.20g for the modified design.
Hence, the modified design will be expected to
withstand about 33% more inertial forces than
the original one.

7.5.2 Drift Design of Braced Frames

Lateral displacements of braced frames are
primarily caused by two actions: deformation of
the braces, and axial deformation of the
columns (chord action). Several methods are
available for estimation of braced frame
displacements (7-44, 7-49, 7-50). The contribution of
brace deformations to story drift may be
estimated by(7-44):

∑ α=
br

br
br L

EA
S

2cos
(7-55)

br
br S

VΣ=∆ (7-56)

where ∆br is story drift due to brace
deformations, ΣV is the story shear, Sbr is the
sum of stiffnesses of the braces at the level
under consideration, E is the modulus of
elasticity of brace, Abr and Lbr are the cross
sectional area and the length of each brace, and
α is the angle that a brace makes with the
horizontal axis. The summation is carried out
over all braces at the level under consideration.
Equation 7-55 is valid as long as the braces do
not yield or buckle.
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For ordinary braced frames, the bent story
stiffness is negligible in comparison with the
brace stiffness. However, in cases where rigid
beam-column connections are utilized (such as
eccentrically braced frames) the bent stiffness
can be significant. In these situations, the bent
story stiffness (see Sec. 7.5.1, “Bent
Displacements”) should be added to the brace
stiffness.

The cantilever drifts may be computed via
the Moment Area Method as explained in Sec.
7.5.1, “Cantilever Displacements”. Note that in
ordinary braced frames, where beams and
columns are not joined by moment connections,
only some of the columns (those in the vicinity
of braces) provide significant resistance to
cantilever deflections.

Figure 7-37. Braced frame elevation (Example 7-9).

EXAMPLE 7-9
Estimate the first and second-order lateral

displacements and story drifts for the 10-story
braced steel frame shown in Figure 7-38. All

beam to column connections are simple. The
tributary width of the frame is 30 ft. The gravity
load is 100 psf on the roof level and 120 psf on
typical floors. Assume that the braces are so
proportioned that none of them either yield or
buckle under the given loads.

We have

W8×35 A = 10.3 in2

For braces at typical floors,

6402.062.15/10 cos

in.187.44ft.62.15)12()10( 22

==α
==+=brL

kips/in.27.1306

44.187/)6402.0)(3.10)(29000(2
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2
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br
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For braces at the first floor,
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The brace action story drifts and lateral
displacements are calculated in Table 7-10. To
show the accuracy of the above simple
procedure, an exact first-order elastic analysis
was also performed, in which large column
areas were used to eliminate axial deformation
of the columns. Results of the exact and
approximate analyses are compared in Figure 7-
39, where good agreement can be observed.

The chord action story drifts and lateral
displacements are calculated in Table 7-11. The
total drifts are magnified using the direct P-
delta method in Table 7-12. The extent of
contribution of each action to the lateral
response of the frame is shown in Figure 7-40,
where the dominance of chord action is evident.
The results obtained by the above simple
procedure are compared with those obtained by
an exact second-order analysis in Figures 7-41
and 7-42.
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Table 7-10. Calculation of brace-action story drifts and lateral displacements for the 10-story braced frame of example 7-9.
Level h,

in.
ΣV,
kips

Sbr

kips/in.
∆br,
in.

Lat. disp.
in.

10 144 30.22 1306 0.0231 0.8279
9 144 52.17 1306 0.0399 0.8048
8 144 71.74 1306 0.0549 0.7649
7 144 88.93 1306 0.0681 0.7100
6 144 103.76 1306 0.0794 0.6419
5 144 116.21 1306 0.0890 0.5625
4 144 126.30 1306 0.0967 0.4735
3 144 134.01 1306 0.1026 0.3768
2 144 139.34 1306 0.1067 0.2742
1 180 142.31 850 0.1675 0.1675

Table 7-11. Calculation of chord-action story drifts and lateral displacements for the braced frame of Example 7-9.
Level h,

in.
ΣV,
kips

Mov,
in.-kips

Ioi,
in.4

A,
in.2

,x
in.

Chord disp.,
in.

Chord
drift, in.

10 144 30.22 4,352 406,080 2.66×105 48.00 2.958 0.452
9 144 52.17 11,864 406,080 9.92×105 60.88 2.506 0.443
8 144 71.74 22,194 576,000 14.7×105 64.72 2.063 0.426
7 144 88.93 35,001 576,000 24.6×105 66.63 1.637 0.397
6 144 103.76 49,942 763,200 27.6×105 67.78 1.240 0.360
5 144 116.21 66,677 763,200 37.9×105 68.56 0.880 0.312
4 144 126.30 84,864 921,600 40.8×105 69.12 0.568 0.256
3 144 134.01 104,161 921,600 50.9×105 69.55 0.312 0.190
2 144 139.34 124,226 1,344,960 42.2×105 69.89 0.122 0.122
1 180 142.31 149,841 1,344,960 63.2×105 87.20 0.000 0.000

Table 7-12 Calculation of total first-order and second-order story drifts and lateral displacements for the braced frame of
example 7-9.

Level h,
in.

ΣV,
kips

ΣP,
kips

∆1
in.

µ ∆2= µ ∆1,
in.

2nd-Order
Disp.,in.

10 144 30.22 180 0.475 1.020 0.485 3.897
9 144 52.17 396 0.483 1.026 0.496 3.412
8 144 71.74 612 0.481 1.029 0.495 2.916
7 144 88.93 828 0.465 1.031 0.479 2.421
6 144 103.76 1044 0.439 1.032 0.453 1.942
5 144 116.21 1260 0.401 1.031 0.413 1.489
4 144 126.30 1476 0.353 1.029 0.363 1.076
3 144 134.01 1692 0.301 1.027 0.309 0.713
2 144 139.34 1908 0.229 1.022 0.234 0.404
1 180 142.31 2124 0.168 1.014 0.170 0.170
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Figure 7-38. Lateral displacements caused by brace
deformations.

Figure 7-39. Contribution of various actions to the total
lateral displacement of the braced frame of Example 7-9.

Figure 7-40. “Exact” versus approximate lateral
displacements for the braced frame of example 7-9.

Figure 7-41. “Exact” versus approximate interstory drift
ratios for the braced frame of Example 7-9.
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Figure 7-42. Design aid for drift design of frame-shear wall systems(7-51) (Sc/Sb=1).
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Figure 7-43. Design aid for drift design of frame-shear wall systems (7-51) (Sc/Sb=5).



366 Chapter 7

Figure 7-44. Design aid for drift design of frame-shear wall systems(7-51) (Sc/Sb=10)
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7.5.3 Drift Design of Frame - Shear Wall
Systems

Estimates of the lateral displacements of
Frame-Shear wall systems may be obtained
using the charts developed by Khan and
Sbarounis(7-51). Some of these charts, for the
case of constant stiffness over the height, are
reproduced in Figures 7-43 to 7-45. A sample
application of the charts is presented in
Example 7-10. In order to utilize the charts, the
sum of stiffnesses of beams (Sb), columns (Sc)
and shear walls (Ss) should be computed by
adding the corresponding EI/L terms.

The charts provide the ratio of the lateral
deflection of the frame-shear wall system to the
free deflection (at the top) of the shear wall
alone. Note that the ratio of Ss/Sc should be
normalized by multiplying it by (10/N)2, where
N is the number of stories in the structure.

Another method for estimating drift and
natural periods of frame-shear wall systems, has
been developed by Stafford Smith et al.(7-52, 7-53)

The method has been shown to provide accurate
estimates of lateral displacements for a variety
of structural systems. It can be easily adapted to
programmable calculators. It is rather tedious,
however, for hand calculations.

EXAMPLE 7-10
Use the Khan and Sbarounis charts to

estimate the lateral displacement at the top of
the 30-story frame-shear wall building shown in
Figure 7-46. Assume a uniform lateral pressure
of 30psf. Story heights are 12.5 feet. Use gross
concrete section properties and E = 4000 ksi.

Column Stiffnesses:

Col. Type b, in. h, in. I, ft4 I / L, ft3

C1 24 24 1.333 0.1067
C2 28 28 2.470 0.1976
C3 32 32 4.214 0.3371
C4 36 36 6.750 0.5400

Total I / L = 4(0.1067) + 6(0.1976)
         +4(0.3371) + 2(0.5400)
         = 4.041 ft3

Beams:

B1: I = 
5

3

(12)

(14)(36)  = 2.625 ft4

Figure 7-45. Plan of the 30 story frame-shear wall
building(7-52).

B2: I = 
5

3

(12)

(18)(24)
 = 1.000 ft4

B3: I = 
5

3

(12)

(18)(32)
 = 2.370 ft4
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Free deflection of the wall:

kips/ft88.2
1000

)24)(4(30 ==w

in.20.28ft.69.1

)2)(67.3658)(576000)(8(

)375)(88.2(

8

44

==

==∆
EI

wl

Using the curve corresponding to Ss/Sc = 20
from Chart (a) of Figure 7-44, we have
Dtop = (0.22)(20.28) = 4.06 inches, which
compares very well with the computed exact
displacement of 4.23 inches (see Figure 7-47).

Figure 7-46. Lateral displacement of the 30 story frame-
shear wall building.

7.5.4 Torsional Effects

One of the most important tasks in the
process of the selection, and the subsequent
proportioning, of a structural system, is the
minimization of torsional response. In general,
this is a rather difficult task, and its success is
strongly dependent on the intuition and
experience of the designer.

For buildings in which the locations and
relative stiffnesses of the lateral load resisting
sub-systems (e.g. frames and walls) do not vary
significantly along the height, the torsional
displacements may be estimated as follows:
1. For buildings which are composed of only

one type of lateral load resisting system
(moment frames, braced frames, or walls),
the torsional rotation at the ith floor, θi, and
the corresponding torsional drift of the j th
frame at this floor, ∆j, may be estimated as:

J

eV ii
i

2)(Σ=θ (7-57)

ijj R θ=∆ (7-58)

where ΣVi is the story shear, ei is the
eccentricity of the "center of rigidity" from the
center of mass, Rj is the closest distance from
the jth frame to the center of rigidity, and J is
the torsional story stiffness given by

2
jj RKJ Σ= (7-59)

2. For combination systems (frame-shear wall
systems, moment frame and braced frame
combinations), the process is more complex:

– The direct lateral displacements and story
drifts of the structure are obtained via the
Khan-Sbarounis charts or any other
appropriate method.

– The total direct story shear carried by the
frames subjected to the above
displacements, Vfi, are calculated (see
Section 7.5.1, “Bent Displacements).

– The shear Vfi is distributed among the
various frames according to their relative
stiffness in the direction of applied load.

– The rest of the story shear (ΣVi - Vfi) is
distributed among the various walls (braced
frames) according to their relative stiffness
in the direction of applied loads.

– The shear in each frame or wall, as
calculated in the two preceding steps, is
used as a measure of rigidity, and the center
of rigidity of the entire system is located.



7. Design for Drift and Lateral Stability 369

– The torsional rotation and the corresponding
torsional drift of individual frames and walls
are calculated using Equations 7-57 and 7-
58.
It may be noticed that the concept of the

"center of rigidity" is of significant use in the
preliminary evaluation of the torsional
response. However, the physical limitations of
such a concept when applied to the seismic
response of general, three dimensional,
multistory structures should be clearly
understood. In a three dimensional, multi-story
structure, if it exhibits significant plan and
elevation irregularities, the lateral resistance is
provided by a combination of strongly inter-
dependent actions, both within a single story,
and among various floors. In general, for such a
complex system, centers of rigidity (points of
application of forces for a torsion-free
response) do not exist. Furthermore, if and
when they exist, they must all lie on a single
vertical line(7-54).

7.6 SEISMIC CODE
REQUIREMENTS FOR
DRIFT AND P-DELTA
ANALYSIS

7.6.1 UBC-97 Provisions

UBC-97(7-57), addresses design for drift and
lateral stiffness within the framework of
strength design. The reduced lateral
displacement calculated by utilizing the
reduction factor, R, is called ∆S. The maximum
inelastic response displacement is called ∆M and
is calculated from

SM R∆=∆ 7.0 (7-60)

Alternatively, ∆M may be computed by
nonlinear time history analysis. The analysis to
determine ∆M must consider P-delta effects. P-
delta effects, however, may be ignored when
the ratio of secondary moments to first-order
moments does not exceed 0.10. This ratio is
calculated from

sxx

Sxx

hV

P ∆
=θ (7-61)

where
∆Sx = story drift based on ∆S acting between

                  levels x and x-1
Vx = the design seismic shear force acting
            between levels x and x-1
hsx = the story height below level x
Px = the total unfactored vertical design load

               at and above level x.
In seismic zones 3 and 4, P-delta effects

need not be considered when the story drift
index does not exceed 0.02/R.

UBC-97 permitted drift using ∆M is a
function of the fundamental period of the
structure





≥≤∆
<≤∆

.sec7.0for   020.0

.sec7.0for   025.0

Th

Th

sxMx

sxMx (7-61)

where
∆Sx = story drift based on ∆M acting between

                  levels x and x-1
The fundamental period used in drift

calculations is not subject to lower-bound
period formulas of the code (see Chapter 4) and
may be based on the Rayleigh formula or other
rational calculations such as a detailed
computer model of the structure.  Furthermore,
UBC-97 permits these drift limits to be
exceeded when the engineer can demonstrate
that greater drift can be tolerated by both
structural and nonstructural elements whose
performance can affect the seismic safety of the
structure. Therefore, if local drift is exceeded
locally in an area without a serious seismic
ramification, it can be tolerated and there is no
need for a redesign.

7.6.2 IBC-2000 Provisions

The provisions of IBC-2000(7-58) embody a
convergence of the efforts initiated by the
Applied Technology Council's ATC 3-06(7-59)

document published in 1978 and its successive
modifications by the Federal Emergency
Management Agency(7-60) and that of the UBC
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provisions.  Therefore, setting aside the
difference in the language and vocabulary, IBC-
2000 and UBC-97 drift and P-delta provisions
are very similar (7-60). Quite rationally, IBC-
2000 addresses seismic design for drift and
lateral stiffness exclusively at the ultimate limit
state of building behavior.

According to IBC-2000 provisions, the
design story drift, ∆, is computed as the
difference of the deflections, δx, at the top and
bottom of the story under consideration in
accordance with the following formula

E

xed
x I

C δδ = (7-62)

where:
Cd = the deflection amplification factor as

                given in Table 5-17,
δxe.= the deflection determined by an elastic

                analysis of the force-resisting system,
                and

ΙE = the occupancy importance factor as
                given in Section 5.4.2.

The maximum inter-story drift index
calculated using Equation 7-62 should not
exceed the corresponding limits described in
Section 5.4.15.  Furthermore, for structures
assigned to seismic design categories C, D, E,
or F having plan irregularity types 1a or 1b (see
Chapter 5) the design story drift is to be
computed as the largest difference of the
deflections along any of the edges of the
structure at the top and bottom of the story
under consideration.

To determine whether a P-delta analysis is
required, a stability coefficient is used. This is
in fact, the same as the stability index
introduced previously in this Chapter. P-delta
effects need not be considered when the
stability coefficient, θ as determined from
Equation 7-63 is less than 0.10:

dsxx

x

ChV

P ∆=θ (7-63)

where
∆ = the design story drift

Vx = the seismic shear force acting between
                 level x and x-1

hsx = the story height below level x, and
Px = the total unfactored vertical design load

                 at and above level x.
The stability coefficient, θ, should not

exceed an upper limit of θmax given as

 25.0
5.0

max ≤=
dCβ

θ (7-63)

where:
β = the ratio of shear demand to shear

                capacity for the story between level x
                and x-1. If this ratio is not calculated,
                a value of β = 1 should be used.

When θ is greater than 0.10 but less than
θmax, IBC-2000 permits direct calculation of P-
delta effects in a manner very similar to the
direct P-delta method discussed earlier in this
Chapter. That is,  the calculated first-order
interstory drifts are to be multiplied by a factor
of 1/(1-θ)>1. If, however, θ is larger than θmax

the structure is potentially unstable and should
be redesigned.
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